PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 62 | 1 |

Tytuł artykułu

Study on regulation of growth and biosynthesis of cellulolytic enzymes from newly isolated Aspergillus fumigatus ABK9

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study was aimed to evaluate the pattern of cellulase biosynthesis from Aspergillus fumigatus ABK9 under submerged fermentation. Production was increased concomitantly with fungal growth up to 72 h and reached maximum (Xmax –6.72 g/l) with specific growth rate (µmax) of 0.126/h. Highest specific rate of enzyme production (qp) was found at initial medium pH of 5.0 and incubation temperature of 30°C. At the same time, in the presence of 2-deoxy-D-glucose concentration of 0.5 mg/ml, the production of cellulolytic enzymes, viz, carboxymethyl cellulase activity (CMCase), filter paper degrading activity (FPase) and β-glucosidase activity reached maximum of 132.2, 21.3 and 28.9 U/ml, respectively. Cellulase biosynthesis was induced in respect to higher volumetric production rate (Qp), specific rate of enzymes production (qp, U/g biomass/h) and enzyme/biomass yield (YE/X) when grown in carboxymethyl cellulose in comparison to other saccharides as sole carbon source. Induction ratios (IR) of cellulases were between 12.3 and 24.4 in the presence of 1.5% (w/v) CMC in the culture media. The strain was quite resistant to catabolic repression by glucose up to 0.4% (w/v). Cellulases production was greatly influenced in the presence of yeast extract and potassium dihydrogen phosphate (KH₂PO₄) as nitrogen and phosphate sources in the culture media. C/N ratio of 10.0 and C/P ratio of 4.0 proved to be the best for the production of enzyme cocktail. Along with the high production yield, the crude enzymes showed a promising cellulose hydrolyzing efficiency of rice straw, indicating the enzyme could be beneficial for its large scale industrial exploitation.

Wydawca

-

Rocznik

Tom

62

Numer

1

Opis fizyczny

p.31-43,fig.,ref.

Twórcy

autor
  • Department of Microbiology, Vidyasagar University, Paschim Midnapore-721102, West Bengal, India
autor
  • Department of Microbiology, Vidyasagar University, Paschim Midnapore-721102, West Bengal, India
autor
  • Department of Microbiology, Vidyasagar University, Paschim Midnapore-721102, West Bengal, India
autor
  • Department of Microbiology, Vidyasagar University, Paschim Midnapore-721102, West Bengal, India
  • Department of Microbiology, Vidyasagar University, Paschim Midnapore-721102, West Bengal, India
autor
  • Department of Microbiology, Vidyasagar University, Paschim Midnapore-721102, West Bengal, India
autor
  • Department of Microbiology, Vidyasagar University, Paschim Midnapore-721102, West Bengal, India

Bibliografia

  • Adsul M.G., J.E. Ghule, R. Singh, H. Shaikh, K.B. Bastawdea, D.V. Gokhale and A.J. Varma. 2004. Polysaccharides from bagasse: applications in cellulase and xylanase production. Carbohydr. Polym. 57: 67–72.
  • Agnihotri S.D. Dutt, C.H. Tyagi, A. Kumar and J.S. Upadhyaya. 2010. Production and biochemical characterization of a novel cellulase-poor alkali-thermo-tolerant xylanase from Coprinellus disseminatus SW-1 NTCC 1165. World J. Microbiol. Biotechnol. 26: 1349–1359.
  • Aguilar C.N., C. Augur and E.F. Torres. 2001. Induction and repression patterns of fungal tannase in solid-state and submerged cultures. Proce. Biochem. 36: 565–570.
  • Ahamed A and P. Vermette. 2009. Effect of culture medium composition on Trichoderma reesei’s morphology and cellulase production. Biores. Technol. 100: 5979–5987.
  • Bartholomew, W.H., E.O., Karrow., M.R. Sfat and R.H. Wilhelm. 1950. Oxygen Transfer and Agitation in Submerged Fermentations. Effect of Air Flow and Agitation Rates upon Fermentation of penicillium chrysogenum and Streptomyces griseus. Ind. Eng. Chem. 42: 1801–1809.
  • Bergmeyer H.U. 1974. Methods of enzymatic analysis. Verlag Chemie, Weinheim, Berlin. 2nd edn. 1025.
  • Bokhari S.A.I., F. Latif and M.I. Rajoka. 2008. Kinetics of highlevel of β-glucosidase production by a 2.-deoxyglucose-resistant mutant of Humicola lanuginosa in submerged fermentation. Braz. J. Microbiol. 39: 724–733.
  • Cybulska, I., H. Lei and J. Julson. 2010. Hydrothermal pretreatment and enzymatic hydrolysis of Prairie cord grass. Energy. Fuels. 24, 718–727.
  • Das, A and U. Ghosh. 2009. Solid state fermentation of waste cabbage by Penicillium notatum NCIM NO-923 for production and characterization of cellulases. J. Sci. Ind. Res. 68: 714–718.
  • Demain A.L., M. Newcomb and J.H.D. Wu. 2005. Cellulase, Clostridia, and Ethanol. Microbiology and Mol. Bio. Rev. 69: 124–154.
  • Elmer L. and Jr. Gaden. 2000. Fermentation Process Kinetics. Biotechnol. Bioeng. 67: 629–635.
  • Epps H.M.R. and E.F. Gale. 1942. The influence of the presence of glucose during growth on the enzymatic activities of Escherichia coli: comparison of the effect with that produced by fermentation acids. J. Biochem.36: 619–923.
  • Evsenko, M.S., A.S. Shashkov, A.V. Avtonomova, L.M. Krasnopolskaya, and A. I. Usov. 2009. Polysaccharides of basidiomycetes. Alkali-soluble polysaccharides from the mycelium of white rot fungus Ganoderma lucidum (Curt.: Fr.) P. Karst. Biochem. 74: 533–542.
  • Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–791.
  • Gao J., H. Weng, D. Zhu, M. Yuan, F Guan and Yu. Xi. 2008. Production and characterization of cellulolytic enzymes from the thermo acidophilic fungal Aspergillus terreus M11 under solid state cultivation of corn stover. Biores. Technol. 99: 7623–7629.
  • Goodell B., J. Jellison, J. Liu, G. Daniel, A. Paszczynski, F. Fekete, S. Krishnamurthy, L. Jun and G. Xu. 1997. Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. J. Biotechnol. 53: 133–162.
  • Haq, I., S. Khurshid, S. Ali, H. Ashraf, M.A. Qadeer and M.I. Rajoka. 2001. Mutation of Aspergillus niger for hyper production of citric acid following fermentation of blackstrap molasses. World J. Microbiol. Biotechnol. 17: 35–37.
  • Ibrahim M.M., W.K. El-Zawawy, Y.R.A. Fattah, N.A. Soliman, and F.A. Agblevor. 2011. Comparison of alkaline pulping with steam explosion for glucose production from rice straw. Carbohydr. Polym. 83: 720–726.
  • Ilmen M. 1997. Molecular mechanisms of glucose repression in the filamentous fungus Trichoderma reesei. VTT Publications 315: 1–86.
  • Jeng W.Y., N.C. Wang, M.H. Lin, C.T. Lin, Y.C Liaw, W.J Chang, C. Liu, P.H. Liang and A.H.J. Wang. 2011. Structural and functional analysis of three b-glucosidases from bacterium Clostridium cellulovorans, fungus Trichoderma reesei and termite Neotermes koshunensis. J. Struct. Biol. 173: 46–56.
  • Jorgensen H., A. Morkeberg and K.B.R. Krogh. 2004. Growth and enzyme production by three Penicillium species on monosaccharides. J. Biotechnol. 109: 295–299.
  • Juhasz T., Z. Szengyel, K. Reczey, A.M. Siika and L. Viikari. 2005. Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Proc. Biochem. 40: 3519–3525.
  • Kubicek C.P. 1992. The cellulase protein of Trichoderma reesei: structure, multiplicity, mode of action and regulation of formation. Adv. Biochem. Eng. Biotechnol. 45: 1–27.
  • Kubicek C.P., R. Messner and F. Gruber. 1993. The Trichoderma reesei cellulase regulatory puzzle: from the interior life of a secretory fungus. Enzyme Microb.Technol.15: 90–99.
  • Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227: 680–685.
  • Lawford, H and J.D. Rouseau. 1993. Manosse fermentation by ethanologenic recombinants of Escherchia coli. Biotechnol. Lett. 15: 615–620.
  • Lederberg J. 1992. Cellulases. In: Encyclopaedia of Microbiology 1; A-C, Academic Press, Inc.
  • Lockington, R.A., L. Rodbourn, S. Barnett, C.J. Carter and J.M. Kelly. 2002. Regulation by carbon and nitrogen sources of a family of cellulases in Aspergillus nidulans. Fungal Genetics and Biology 37, 190–196.
  • Lo C.M and L.K. Ju. 2009. Sophorolipids-induced cellulase production in cocultures of Hypocrea jecorina Rut C30 and Candida bombicola. Enzyme Microb. Technol. 44: 107–111.
  • Lowry O.H., N.J. Rosebrough, A.L. Farr and R.J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275.
  • Lynd L.R., P.J. Weimer and W.H. Van. 2002. Pretorius IS Microbial Cellulose Utilization: Fundamentals and Biotechnology. Microbiol. Mol. Biol. 66: 506–577.
  • Mach R.L. and S. Zeilinger. 2003. Regulation of gene expression in industrial fungi: Trichoderma. Appl. Microbiol. Biotechnol. 60: 515–522.
  • Magasani B.K. 1961. Catabolite repression. Cold Spring Harbor Symposia on Quantitative Biology 26: 249–256.
  • Mandels M., R. Andreotti and C. Roche. 1976. Measurement of saccharifying cellulase. Biotechnol. Bioeng. Symp. 6: 21–33.
  • Mandels M., F.W. Parrish and E.T. Reese. 1962. Sophorose as an inducer of cellulase in Trichoderma reesei. J. Bacteriol. 83: 400–408.
  • Messner R. and C.P. Kubicek. 1991. Carbon source control of cellobiohydrolase I and II formation by Trichoderma reesei. Appl. Environ. Microbiol. 57: 630–635.
  • Miller G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428.
  • Muhannad I., W. Massadeh, W.M.W. Yusoff, O. Othman and K. Jalil. 2001. Synergism of cellulase enzymes in mixed culture solid substrate fermentation. Biotechnol. Lett. 23: 1771–1774.
  • Mukherjee, S., S. Chowdhury, S. Ghorai, S. Pal, and S. Khowala. 2006. Cellobiase from Termitomyces clypeatus: Activity and secretion in presence of glycosylation inhibitors. Biotechnol. Lett. 28: 1773–1778.
  • Pradnya D., N. Sajitha and K. Shubhangi. 2008. Water Hyacinth as Carbon Source for the Production of Cellulase by Trichoderma reesei. Appl. Biochem. Biotechnol. 158: 552–560.
  • Rajoka, M.I., A. Bashir, M.R.A. Hussain and K.A. Malik. 1998. Mutagenesis of Cellulomonas biazotea for improved production of cellulases. Folia Microbiol. 43: 15–22.
  • Rajoka M.I., M.W. Akhtar, A. Hanif and A.M. Khalid. 2006. Production and characterization of a highly active cellobiase from Aspergillus niger grown in solid state fermentation. World J. Microbiol. Biotechnol. 22: 991–998.
  • Rodrigues T.H.S., M.V.P. Rocha, G.R. Macedo and L.R.B. Gonçalves. 2011. Ethanol Production from Cashew Apple Bagasse: Improvement of Enzymatic Hydrolysis by Microwave-Assisted Alkali Pretreatment. Appl. Biochem. and Biotechnol. 164: 929–943.
  • Saitou N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Bio. Evolution. 4: 406–425.
  • Seiboth B., S. Hakola and R.L. Mach. 1997. Role of four major cellulases in triggering of cellulase gene expression by cellulose in Trichoderma reesei. J. Bacteriol. 179: 5318–5320.
  • Singhania R.R., R.K. Sukumaran, A.K. Patel, C. Larroche and A. Pandey. 2010. Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb. Technol. 46: 541–549.
  • Sterner R.W. and J.J. Elser. 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press Princeton NJ, 584.
  • Sun X., Z. Liu, K. Zheng, X. Song and Y. Qu. 2008. The composition of basal and induced cellulase systems in Penicillium decumbens under induction or repression conditions. Enzyme Microb. Technol. 42: 560–567.
  • Updegraff D.M. 1969. Semi micro determination of cellulose in biological materials. Anal. Biochem. 32: 420–424.
  • Vaheri M.P., M.E.O. Vaheri and V.S. Kauppinen. 1979. Formation and release of cellulolytic enzymes during growth of Trichoderma reesei on cellobiose and glycerol. European Journal of Appl. Microbiol. Biotechnol. 8: 73–80.
  • Vries R.P. and J. Visser. 2001. Aspergillus enzymes involved in degradation of plant cell all polysaccharide. Microbiol. Mol. Rev. 65: 497–522.
  • Wilson D.B. 2009 Cellulases and biofules. Curr. Opin. in Biotechnol. 20: 1–5.
  • Wood T.M. and Bhat, K.M. 1988. Methods for measuring cellulase activity. In: Wood TM, Kellogg ST, editors. Methods in enzymology. London: Academic Press Inc. 160: 87–112.
  • Yue F.E.N.G., X.J. Jian and Z.H.U. Li-wei. 2009. Recent developments in activities, utilization and sources of cellulase. For Stud China 11: 202–207.
  • Zhang Y.P. and L.R. Lynd. 2005. Regulation of Cellulase Synthesis in Batch and Continuous Cultures of Clostridium thermocellum. J. Bacteriol. 87: 99–106.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-0ddd29d3-3518-4fc4-b125-e3edb9bea39d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.