Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 4 |
Tytuł artykułu

First observations of Boeckella michaelseni Mrazek 1901 in and optical properties of a central patagonian lake

Warianty tytułu
Języki publikacji
The Patagonian lakes have a glacial origin and some of these are associated with glaciers that generate specific optical properties, such as water colorations due to glacier sediments. These lakes also are oligotrophic with a low crustacean zooplankton species number. The aim of the present study was to analyze potential associations between optical properties and zooplankton communities in General Carrera Lake (46°S). The results revealed inverse associations in reflectance of bands 1, 5, and 7 of LANDSAT TM+with calanoid copepodites, between band 7 with conductivity, and band 7 with B. michaelseni abundance. Also, we observed direct associations between bands 1-5 with total dissolved solids, meaning that this zooplankton assemblage is similar to north Patagonian oligotrophic lakes. These results would agree with a few reports for other similar Patagonian lakes of glacial origins as reported for Argentinean and Chilean Patagonia. Nevertheless, more studies are necessary for finding potential associations between limnological characters and optical properties.
Słowa kluczowe
Opis fizyczny
  • Laboratorio de Ecología Aplicada y Biodiversidad, Facultad de Recursos Naturales, Escuela de Ciencias Ambientales, Universidad Catolica de Temuco, Casilla 15-D, Temuco, Chile
  • Nucleo de Estudios Ambientales, UC Temuco, Chile
  • Departamento de Ciencias Fisicas, Universidad de La Frontera, Casilla 54-D, Temuco, Chile
  • Center for Optics and Photonics, Universidad de Concepcion, Casilla 4012, Concepcion, Chile
  • 1. DE LOS RÍOS-ESCALANTE P., Crustacean zooplankton communities in Chilean inland waters. Crustaceana Monographs 12, 1, 2010.
  • 2. KROGH S.A., POMEROY J.W., McPHEE J., Physically based mountain hydrological modeling using reanalysis data in Patagonia. Journal of Hydrometeorology, 16, 172, 2015.
  • 3. VANDEKERKHOVE E., BERTRAND S., REID B., BARTELS A., CHARLIER B., Sources of dissolved silica to the fjords of northern Patagonia (44-48° S): the importance of volcanic ash soil istribution and weathering. Earth Surface Processes and Landforms. DOI: 10.1002/esp. 3840, 2015.
  • 4. DE LOS RÍOS-ESCALANTE P., ACEVEDO P. First observations on zooplankton and optical properties in a glacial north Patagonian lake (Tagua Tagua Lake, 41°S Chile). Polish Journal of Environmental Studies, 25, 453, 2016.
  • 5. SOTO D., CAMPOS H., STEFFEN W., PARRA, O., ZUNIGA, L. The Torres del Paine lake district (Chilean Patagonia): a case of potentially N-limited lakes and ponds. Arch. Hydrobiol., 99 (1/2), 181, 1994.
  • 6. DE LOS RÍOS-ESCALANTE P, QUINAN E., ACEVEDO P. Crustacean zooplankton communities in Lake General Carrera (46°S) and their possible association with optical properties. Crustaceana, 86, 507, 2013.
  • 7. ARAYA J.M., ZÚÑIGA L. Manual taxonómico del zooplancton lacustre de Chile. Bol. Limnol, Univ. Austral de Chile, 8, 110, 1985.
  • 8. BAYLY I. A. E. Fusion of the genera Boeckella and Pseudoboeckella (Copepoda) and a revision of their species from South America and sub-Antarctic islands. Rev. Chilena Hist. Nat., 65, 17, 1992.
  • 9. DE LOS RIOS P., SOTO D, MANSILLA A. Comunidades zooplanctónicas en lagos del parque nacional Torres del Paine: un nuevo enfoque de análisis de factores reguladores de su estructura comunitaria. Anales del Instituto de la Patagonia, 38, 111, 2010.
  • 10. DE LOS RÍOS P., SOTO D., 2009. Estudios limnológicos en lagos y lagunas del Parque Nacional Torres del Paine (51° S, Chile). Anales Instituto Patagonia 37, 63, 2009.
  • 11. PASQUINI A.I., DEPETRIS P.J., Southern Patagonia´s Perito Moreno Glacier, Lake Argentino and Santa Cruz river hydrological system: an overview. Journal of Hydrology, 405: 48, 2011.
  • 12. LASPOUMADERES C., MODENUTTI B., SOUZA M., BASTIDAS M., CUASSOLO F., BALSEIRO E., 2013. Glacier melting and stoichiometric implications for lake community structure: zooplankton species distributions across a natural light gradient. Global Change Biology, 19, 316, 2013.
  • 13. HYLANDER S., JEPHSON T., LEBRET, K., VON EINEM J., FAGEBERG T., BALSEIRO E., MODENUTTI B., SOUZA M., LASPOUMADERES, C., JÖHNSON M., LJUNGBERG P., NICOLLE A., NILSSON P.A., RANAKER L., HANSSON L.A. Climate-induced imput of turbid glacial meltwater affects vertical distribution and community composition of phyto- and zooplankton. Journal of Plankton Research, 33, 1239, 2011.
  • 14. SOMMARUGA R., KANDOLF G. Negative consequences of glacial turbidity for the survival of freshwater planktonic heterotrophic flagellates. Science Reports 4, 4113, 2014.
  • 15. PALMER S.C.J., HUNTER P.D., LANKESTER T., HUBBARD S., SPYRAKOS E., TYLER A.N., PRÉSIG M., HORVATH H., LAMB, A., BALSTER H., TOTH V.R., Validation of envisat MERIS algorithms for chlorophyll retrievan in a large turbid and optically-complex shallow lake. Remote Sensing of Environment 157, 158, 2015.
  • 16. PALMER S.C.J., KUTZER T., HUNTER P.D. Remote sensing of inland waters: challenges, progress and future directions. Remote sensing of Environment, 157, 1, 2015
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.