PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 62 | 3 |

Tytuł artykułu

Characteristic of bacteriocines and their application

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Bacteriocines are small peptides with anti-bacterial properties. They are produced both by Gram-positive and Gram-negative bacteria. Until now, a few hundred bacteriocines were described. Classification of bacteriocines undergoes continuous alterations, as new developments regarding their structure, amino acid sequence and recognised mechanism of their action are available. Some of bacteriocins (lantibiotics) contain atypical amino acids, such as lantionine (Lan), methyllantionine (MeLan), dehydroalanine (Dha), dehydrobutyrine (Dhb), or D-alanine (D-Ala). The best recognized bacteriocines are produced by lactic acid bacteria, including nisine produced by strains of Lactococcus lactis. These bacteriocines have been recognized to be fully safe for humans. At present, nisine is used in food industry, as a preserving agent. Other lactic acid bacteria bacteriocines and probiotic preparations provide an alternative for antibiotics, and are used in food and in animal feed.

Wydawca

-

Rocznik

Tom

62

Numer

3

Opis fizyczny

p.223-235,fig.,ref.

Twórcy

  • Department of Medical Microbiology, University of Medical Sciences in Poznan, Poznan, Poland
  • Department of Conservative Dentistry and Periodontology, University of Medical Sciences in Poznan, Poznan, Poland

Bibliografia

  • Allison G.E., C. Fremaux and T.R. Klaenhammer. 1994. Expansion of bacteriocin activity and host range upon complementation of two peptides encoded within the lactacin F operon. J. Bacteriol. 176: 2235–2241.
  • Andrzejewska E. and A. Szkaradkiewicz. 2007. Evaluation of the antagonistic effect of Lactobacillus acidophilus on clinical strains of Helicobacter pylori (in Polish). Med. Dośw. 59: 59–64.
  • Andrzejewska E. and A.K. Szkaradkiewicz. 2012. Antagonistic effect of Lactobacillus acidophilus to selected periodontopathogens (in Polish). XXVII Congress of the Polish Society of Microbiologists. September 5–8, 2012, Lublin, Poland. Abstracts: P-X-381.
  • Archimbaud C., N. Shankar, C. Forestier, A. Baghdayan, M.S. Gilmore, F. Charbonné and B. Joly. 2002. In vitro adhesive properties and virulence factors of Enterococcus faecalis strains. Res. Microbiol. 153: 75–80.
  • Aymerich T., H. Holo, L.S. Håvarstein, M. Hugas, M. Garriga and I.F. Nes. 1996. Biochemical and genetic characterization of enterocin A from Enterococcus faecium, a new antilisterial bacteriocin in the pediocin family of bacteriocins. Appl. Environ. Microbiol. 62: 1676–1682.
  • Azpiroz M.F., E. Rodriguez and M. Lavina. 2001. The structure, function, and origin of the microcin H47 ATP-binding cassette exporter indicate its relatedness to that of colicin V. Antimicrob. Agents Chemother. 45: 969–972.
  • Bactibase. 2013. Database dedicated to bacteriocins. http://bactibase.pfba-lab-tun.org/main.php.
  • Bagel. 2013. Bagel automated bacteriocin mining. http://bagel2.molgenrug.nl
  • Baquero F. and F. Moreno. 1984. The microcins. FEMS Microbiol. Lett. 23(2–3): 117–124.
  • Barefoot S.F. and T.R. Klaenhammer. 1984. Purification and characterization of the Lactobacillus acidophilus bacteriocin lactacin B. Antimicrob. Agents Chemother. 26: 328–334.
  • Basanta A., J. Sánchez, B. Gómez-Sala, C. Herranz, P.E. Hernández and L.M. Cintas. 2008. Antimicrobial activity of Enterococcus faecium L50, a strain producing enterocin L50 (L50A and L50B), P and Q, against beer-spoilage lactic acid bacteria in broth, wort (hopped and unhopped), and alcoholic and non-alcoholic lager beers. Int. J. Food Microbiol. 125: 293–307.
  • Beshkova D. and G. Frengova. 2012. Bacteriocins from lactic acid bacteria: microorganisms of potential biotechnological importance for the diary industry. Eng. Life Sci. 12: 1–14.
  • Birri D.J., D.A. Brede, T. Forberg, H. Holo and I.F. Nes. 2010. Molecular and genetic characterization of a novel bacteriocin locus in Enterococcus avium isolates from infants. Appl. Environ. Microbiol. 76: 483–492.
  • Blake K.L., C.P. Randall and A.J. O’Neill. 2011. In vitro studies indicate a high resistance potential for the lantibiotic nisin in Staphylococcus aureus and define a genetic basis for nisin resistance. Antimicrob. Agents Chemother. 55: 2362–2368.
  • Braun V., S.I. Patzer and K. Hantke. 2002. Ton-dependent colicins and microcins: modular design and evolution. Biochimie. 84: 365–380.
  • Brotz H., G. Bierbaum, A. Markus, E. Molitor and H.G. Sahl. 1995. Mode of action of the lantibiotic mersacidin: inhibition of peptidoglycan biosynthesis via a novel mechanism? Antimicrob. Agents Chemother. 39: 714–719.
  • Brotz H., G. Bierbaum, P.E. Reynolds and H.G. Sahl. 1997. The lantibiotic mersacidin inhibits peptidoglycan biosynthesis at the level of transglycosylation. Eur. J. Biochem. 246: 193–199.
  • Burns A.J. and I.R. Rowland. 2000. Anti-carcinogenicity of probiotics and prebiotics. Curr. Issues Intest. Microbiol. 1: 13–24.
  • Casaus P., T. Nilsen, L.M. Cintas, I.F. Nes, P.E. Hernández and H. Holo. 1997. Enterocin B, a new bacteriocin from Enterococcus faecium T136 which can act synergistically with enterocin A. Microbiology 143 : 2287–2294.
  • Cascales E., S.K. Buchanan, D. Duché, C. Kleanthous, R. Lloubes, K. Postle, M. Riley, S. Slatin and D. Cavard. 2007. Colicin biology. Microbiol. Mol. Biol. Rev. 71: 158–229.
  • Chatterjee S., S. Chatterjee, S.J. Lad, M.S. Phansalkar, R.H. Rupp, B.N. Ganguli, H.W. Fehlhaber and H. Kogler. 1992. Mersacidin, a new antibiotic from Bacillus. Fermentation, isolation, purification and chemical characterization. J. Antibiot. (Tokyo) 45: 832–838.
  • Cheigh C.-I. and Y.-R. Pyun. 2005. Nisin biosynthesis and its properties. Biotechnol. Lett. 27: 1641–1648.
  • Chen Y., R. Shapira, M. Eisenstein and T.J. Montville. 1997. Functional characterization of pediocin PA-1 binding to liposomes in the absence of a protein receptor and its relationship to a predicted tertiary structure. Appl. Environ. Microbiol. 63: 524–531.
  • Chow J.W., L.A. Thal, M.B. Perri, J.A. Vazquez, S.M. Donabedian, D.B. Clewell and M.J. Zervos. 1993. Plasmid-associated hemolysin and aggregation substance production contribute to virulence in experimental enterococcal endocarditis. Antimicrob. Agents Chemother. 37: 2474–2477.
  • Cintas L.M., P. Casaus, C. Herranz, L.S. Havarstein, H. Holo, P.E. Hernandez and I.F. Nes. 2000. Biochemical and genetic evidence that Enterococcus faecium L50 produces enterocins L50A and L50B, the sec-dependent enterocin P, and a novel bacteriocin secreted without an N-terminal extension termed enterocin Q. J. Bacteriol. 182: 6806–6814.
  • Cintas L.M., P. Casaus, M.F. Fernández and P.E. Hernández. 1998; Comparative antimicrobial activity of enterocin L50, pediocin PA01, nisin A and lactocin S against spoilage and foodborne pathogenic bacteria. Food Microbiol. 15: 289–298.
  • Clewell D.B. 1990. Movable genetic elements and antibiotic resistance in enterococci. Eur. J. Clin. Microbiol. Infect. Dis. 9: 90–102.
  • Coburn P.S. and M.S. Gilmore. 2003. The Enterococcus faecalis cytolysin: a novel toxin active against eukaryotic and prokaryotic cells. Cell Microbiol. 5: 661–669.
  • Coburn P.S., C.M. Pillar, B.D. Jett, W. Haas and M.S. Gilmore. 2004. Enterococcus faecalis senses target cells and in response expresses cytolysin. Science 306: 2270–2272.
  • Coconnier M.-H., V. Lievin, E. Hemery and A.L. Servin. 1998. Antagonistic activity against Helicobacter infection in vitro and in vivo by the human Lactobacillus acidophilus strain LB. Appl. Environ. Microbiol. 64: 4573–4580.
  • Cole S.T., B. Saint-Joanis and A.P. Pugsley. 1985. Molecular characterisation of the colicin E2 operon and identification of its products. Mol. Gen Genet. 198: 465–472.
  • Contreras B.G., L. De Vuyst, B. Devreese, K. Busanyova, J. Raymaeckers, F. Bosman, E. Sablon and E.J. Vandamme. 1997. Isolation, purification, and amino acid sequence of lactobin A, one of the two bacteriocins produced by Lactobacillus amylovorus LMG P-13139. Appl. Environ. Microbiol. 63: 13–20.
  • Cox C.R., P.S. Coburn and M.S. Gilmore. 2005. Enterococcal cytolysin: a novel two component peptide system that serves as a bacterial defense against eukaryotic and prokaryotic cells. Curr. Protein Pept. Sci. 6: 77–84.
  • Cuozzo S.A., F. Sesma, J.M. Palacios, A.P. de Ruiz Holgado and R.R. Raya. 2000. Identification and nucleotide sequence of genes involved in the synthesis of lactocin 705, a two-peptide bacteriocin from Lactobacillus casei CRL 705. FEMS Microbiol. Lett. 185: 157–161.
  • de Carvalho K.G., F.H.S. Bambirra, M.F. Kruger, M.S. Barbosa, J.S. Oliveira, A.M.C. Santos, J.R. Nicoli, M.P. Bemquerer, A. de Miranda, E.J. Salvucci, F.J.M. Sesma and B.D.G.M. Franco. 2010. Antimicrobial compounds produced by Lactobacillus sakei subsp. sakei 2a, a bacteriocinogenic strain isolated from a Brazilian meat product. J. Ind. Microbiol. Biotechnol. 37: 381–390.
  • de Lorenzo V. and A.P. Pugsley. 1985. Microcin E492, a lowmolecular-weight peptide antibiotic which causes depolarization of the Escherichia coli cytoplasmic membrane. Antimicrob Agents Chemother. 27: 666–669.
  • De Vuyst L., L. Avonts, P. Neysens, B. Hoste, M. Vancanneyt, J. Swings and R. Callewaert. 2004. The lactobin A and amylovorin L471 encoding genes are identical, and their distribution seems to be restricted to the species Lactobacillus amylovorus that is of interest for cereal fermentations. Int. J. Food Microbiol. 90: 93–106.
  • Delves-Broughton J., P. Blackburn, R.J. Evans and J. Hugenholtz. 1996. Applications of the bacteriocin, nisin. Antonie van Leeuwenhoek 69: 193–202.
  • Diep D.B., L.S. Håvarstein and I.F. Nes. 1995. A bacteriocin-like peptide induces bacteriocin synthesis in Lactobacillus plantarum C11. Mol. Microbiol. 18: 631–639.
  • Dupton H., P. Montravers, J. Mohler and C. Carbon. 1998. Disparate findings on the role of virulence factors of Enterococcus faecalis in mouse and rat model. Infect. Immun. 66: 2570–2575.
  • Feng G., G.K.P. Guron, J.J. Churey and R.W. Worobo. 2009. Characterization of mundticin L, a class IIa anti-Listeria bacteriocin from Enterococcus mundtii CUGF08. Appl. Environ. Microbiol. 75: 5708–5713.
  • Ferchichi M., J. Frère, K. Mabrouk and M. Manai. 2001. Lactococcin MMFII, a novel class IIa bacteriocin produced by Lactococcus lactis MMFII, isolated from a Tunisian dairy product. FEMS Microbiol. Lett. 205: 49–55.
  • Ferchichi M., M. Fathallah, P. Mansuelle, H. Rochat, J.M. Sabatier, M. Manai and K. Mabrouk. 2001. Chemical synthesis, molecular modeling, and antimicrobial activity of a novel bacteriocin, MMFII. Biochem. Biophys. Res. Commun. 289: 13–18.
  • Flynn S., D. van Sinderen, G.M. Thornton, H. Holo, I.F. Nes and J.K. Collins. 2002. Characterization of the genetic locus responsible for the production of ABP-118, a novel bacteriocin produced by the probiotic bacterium Lactobacillus salivarius subsp. salivarius UCC118. Microbiol. 148: 973–984.
  • Franz C.M.A.P., M.J. van Belkum, W.H. Holzapfel, H. Abriouel and A. Gálvez. 2007. Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiol. Rev. 31: 293–310.
  • Fremaux C., Y. Héchard and Y. Cenatiempo. 1995. Mesentericin Y105 gene clusters in Leuconostoc mesenteroides Y105. Microbiology 141: 1637–1645.
  • Fuller R. 1989. Probiotics in man and animals. J. Appl. Bacteriol. 66: 365–378.
  • Gálvez A., E. Valdivia, H. Abriouel, E. Camafeita, E. Mendez, M. Martinez-Bueno and M. Maqueda. 1998. Isolation and characterization of enterocin EJ97, a bacteriocin produced by Enterococcus faecalis EJ97. Arch. Microbiol. 171: 59–65.
  • Garde S., P. Gaya, M. Medina and M. Nunez. 1997. Acceleration of flavour formation in cheese by a bacteriocin-producing adjunct lactic culture. Biotechnol Lett. 10: 1011–1014.
  • Garneau S., N.I. Martin and J.C. Vederas. 2002. Two-peptide bacteriocins produced by lactic acid bacteria. Biochimie 84: 577–592.
  • González B., P. Arca, B. Mayo and J.E. Suárez. 1994. Detection, purification, and partial characterization of plantaricin C, a bacteriocin produced by a Lactobacillus plantarum strain of diary origin. Appl. Environ. Microbiol. 60: 2158–2163.
  • Gwiazdowska D. and K. Trojanowska. 2005. Bacteriocins – properties and antimicrobial activity (in Polish). Biotechnologia 1: 114–130.
  • Hancock R.E.W. 1997. Peptide antibiotics. Lancet 349: 418–422.
  • Hastings J.W., M. Sailer, K. Johnson, K.L. Roy, J.C. Vederas and M.E. Stiles. 1991. Characterization of leucocin A-UAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidum. J. Bacteriol. 173: 7491–7500.
  • Héchard Y., B. Dérijard, F. Letellier and Y. Cenatiempo. 1992. Characterization and purification of mesentericin Y105, an anti-Listeria bacteriocin from Leuconostoc mesenteroides. J. Gen. Microbiol. 138(12): 2725–2731.
  • Heng N.C., G.A. Burtenshaw, R.W. Jack and J.R. Tagg. 2007. Ubericin A, a class IIa bacteriocin produced by Streptococcus uberis. Appl. Environ. Microbiol. 73: 7763–7766.
  • Hetz C., M.R. Bono, L.F. Barros and R. Lagos. 2002. Microcin E 492, a channel-forming bacteriocin from Klebsiella pneumoniae, induces apoptosis in some human cell lines. Proc. Natl. Acad. Sci. USA 99: 2696–2701.
  • Holck A.L., L. Axelsson and U. Schillinger. 1994. Purification and cloning of piscicolin 61, a bacteriocin from Carnobacterium piscicola LV61. Curr. Microbiol. 29: 63–68.
  • Hu C.B., T. Zendo, J. Nakayama and K. Sonomoto. 2008. Description of durancin TW-49M, a novel enterocin B-homologous bacteriocin in carrot-isolated Enterococcus durans QU 49. J. Appl. Microbiol. 105: 681–690.
  • Hu C.B., W. Malaphan, T. Zendo, J. Nakayama and K. Sonomoto. 2010. Enterocin X, a novel two-peptide bacteriocin from Enterococcus faecium KU-B5, has an antibacterial spectrum entirely different from those of its component peptides. Appl. Environ. Microbiol. 76: 4542–4545.
  • Huang E., Z. Liwen, Y.-K. Chung, Z. Zheng and A.E. Yousef. 2013. Characterization and application of enterocin RM6, a bacteriocin from Enterococcus faecalis. BioMed. Res. Int. 2013, Article ID 206917.
  • I-TASSER. 2012. Server for protein structure and function prediction. http://zhanglab.ccmb.med.umich.edu/I-TASSER/
  • Izquierdo E., C. Wagner, E. Marchioni, D. Aoude-Werner and S. Ennahar. 2009. Enterocin 96, a novel class II bacteriocin produced by Enterococcus faecalis WHE 96, isolated from Munster cheese. Appl. Environ. Microbiol. 75: 4273–4276.
  • Jack R.W., J.R. Tagg and B. Ray. 1995. Bacteriocins of Gram-positive bacteria. Microbiol. Rev. 59: 171–200.
  • Joerger M.C. and T.R. Klaenhammer. 1986. Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J. Bacteriol. 167: 439–446.
  • Joo N.E., K. Ritchie, P. Kamarajan, D. Miao and Y.L. Kapila. 2012. Nisin, an apoptogenic bacteriocin and food preservative, attenuates HNSCC tumorigenesis via CHAC1. Cancer Med. 1: 295–305.
  • Karpiński T.M. 2012. New peptide (Entap) with anti-proliferative activity produced by bacteria of Enterococcus genus (in Polish). Habilitation thesis. Wydawnictwo Naukowe Uniwersytetu Medycznego im. Karola Marcinkowskiego w Poznaniu. pp. 102.
  • Klaenhammer T.R. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12: 39–86.
  • Klewicka E., B. Cukrowska, Z. Libudzisz, K. Slizewska and I. Motyl. 2011. Changes in gut microbiota in children with atopic dermatitis administered the bacteria Lactobacillus casei DN-114001. Pol. J. Microbiol. 60: 329–333.
  • Kolter R. and F. Moreno. 1992. Genetics of ribosomally synthesized peptide antibiotics. Annu. Rev. Microbiol. 46: 141–163.
  • Kruszewska D., H.G. Sahl, G. Bierbaum, U. Pag, S.O. Hynes and A. Ljungh. 2004. Mersacidin eradicates methicillin-resistant Staphylococcus aureus (MRSA) in a mouse rhinitis model. J. Antimicrob. Chemother. 54: 648–653.
  • Kurek A., A.M. Grudniak, A. Kraczkiewicz-Dowjat and K.I. Wolska. 2011. New antibacterial therapeutics and strategies. Pol. J. Microbiol. 60: 3–12.
  • Lagos R., M. Wilkens, C. Vergara, X. Cecchi and O. Monasterio. 1993. Microcin E492 forms ion channels in phospholipid bilayer membrane. FEBS Lett. 321: 145–148.
  • Lau P.C.K., R.W. Rowsome, M. Zuker and L.P. Visentin. 1984. Comparative nucleotide sequences encoding the immunity proteins and the carboxyl-terminal peptides of colicins E2 and E3. Nucleic Acids Res. 12: 8733–8745.
  • Lee N.-K., E.J. Han, K.J. Han, and H.-D. Paik. 2013. Antimicrobial effect of bacteriocin KU24 produced by Lactococcus lactis KU24 against methicillin-resistant Staphylococcus aureus. J. Food Sci. 78: M465–M469.
  • Leer R.J., J.M.B.M. van der Vossen, M. van Giezen, J.M. van Noort and P.H. Pouwels. 1995. Genetic analysis of acidocin B, a novel bacteriocin produced by Lactobacillus acidophilus. Microbiol. 141: 1629–1635.
  • Libudzisz Z. 2002. Microbiological and technological aspects of probiotics (in Polish). In: Probiotics. Wyd. Nauk. PTTŻ, Kraków. pp. 11–22.
  • Lozano J.C.N., J.N. Meyer, K. Sletten, C. Peláz and I.F. Nes. 1992. Purification and amino acid sequence of a bacteriocin produced by Pediococcus acidilactici. J. Gen. Microbiol. 138: 1985–1990.
  • Lyon W.J. and B.A. Glatz. 1993. Isolation and purification of propionicin PLG-1, a bacteriocin produced by a strain of Propionibacterium thoenii. Appl. Environ. Microbiol. 59: 83–88.
  • Marciset O., M.C. Jeronimus-Stratingh, B. Mollet and B. Poolman. 1997. Thermophilin 13, a nontypical antilisterial poration complex bacteriocin, that functions without a receptor. J. Biol. Chem. 272: 14277–14284.
  • Marki F., E. Hanni, A. Fredenhagen and J. Oostrum. 1991. Mode of action of the lanthionine-containing peptide antibiotics duramycin, duramycin B and C, and cinnamycin as indirect inhibitors of phospholipase A2. Biochem. Pharmacol. 42: 2027–2035.
  • McAuliffe O., R.P. Ross and C. Hill. 2001. Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol. Rev. 25: 285–308.
  • Moll G.N., W.N. Konings and A.J.M. Driessen. 1999. Bacteriocins: mechanism of membrane insertion and pore formation. Antonie van Leeuwenhoek 76: 185–198.
  • Mota-Meira M., C. Lacroix, G. LaPointe and M.C. Lavoie. 1997. Purification and structure of mutacin B-Ny266: a new lantibiotic produced by Streptococcus mutans. FEBS Lett. 410: 275–279.
  • Mota-Meira M., G. LaPointe, C. Lacroix and M.C. Lavoie. 2000. MICs of mutacin B-Ny266, nisin A, vancomycin, and oxacillin against bacterial pathogens. Antimicrob. Agents Chemother. 44: 24–29.
  • Mulders J.W., I.J. Boerrigter, H.S. Rollema, R.J. Siezen and W.M. de Vos. 1991. Identification and characterization of the lantibiotic nisin Z, a natural nisin variant. Eur. J. Biochem. 201: 581–584.
  • Nes I.F., D.B. Diep and H. Holo. 2007. Bacteriocin diversity in Streptococcus and Enterococcus. J. Bacteriol. 189: 1189–1198.
  • Nilsen T., F.N. Ingolf and H. Holo. 2003. Enterolysin A, a cell walldegrading bacteriocin from Enterococcus faecalis LMG 2333. Appl. Environ. Microbiol. 69: 2975–2984.
  • Nishie M., J. Nagao and K. Sonomoto. 2012. Antibacterial peptides “bacteriocins”: an overview of their diverse characteristics and applications. Biocontrol Sci. 17: 1–16.
  • Nissen-Meyer J., H. Holo, L.S. Håvarstein, K. Sletten and I.F. Nes. 1992. A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides. J. Bacteriol. 174: 5686–5692.
  • Nissen-Meyer J., P. Rogne, C. Oppegård, H.S. Haugen and P.E. Kristiansen. 2009. Structure-function relationships of the nonlanthionine-containing peptide (class II) bacteriocins produced by Gram-positive bacteria. Curr. Pharm. Biotechnol. 10: 19–37.
  • Olschläger T. and V. Braun. 1987. Sequence, expression, and localization of the immunity protein for colicin M. J. Bacteriol. 169: 4765–4769.
  • Oppergård C., P. Rogne, L. Emanuelsen, P.E. Kristiansen, G. Fimland and J. Nissen-Meyer. 2007. The two-peptide class II bacteriocins: structure, production, and mode of action. J. Mol. Microbiol. Biotechnol. 13: 210–219.
  • Oscáriz J.C. and A.G. Pisabarro. 2000. Characterization and mechanism of action of cerein 7, a bacteriocin produced by Bacillus cereus Bc7. J. Appl. Microbiol. 89: 361–369.
  • Pathmakanthan S., S. Meance and C.A. Edwards. 2000. Probiotics: A review of human studies to date and methodological approaches. Microb. Ecol. Health Dis. 12(suppl. 2): 10–30.
  • Piard J.C. and M. Desmazeaud. 1992. Inhibiting factors produced by lactic acid bacteria. 2. Bacteriocins and other antibacterial substances. Lait. 72: 113–142.
  • Pons A.M., I. Lanneluc, G. Cottencau and S. Sable. 2002. New developments in non-post translationally modified microcins. Biochimie. 84: 531–537.
  • Portrait V., S. Gendron-Gaillard, G. Cottenceau and AM. Pons. 1999. Inhibition of pathogenic Salmonella enteritidis growth mediated by Escherichia coli microcin J25 producing strains. Can. J. Microbiol. 45: 168–175.
  • Pridmore R.D., B. Berger, F. Desiere, D. Vilanova, C. Barretto, A.C. Pittet, M.C. Zwahlen, M. Rouvet, E. Altermann, R. Barrangou, B. Mollet, A. Mercenier, T. Klaenhammer, F. Arigoni and M.A. Schell. 2004. The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc. Natl. Acad. Sci. USA 101: 2512–2517.
  • Rafter J. 1995. The role of lactic acid bacteria in colon cancer prevention. Scand. J. Gastroenterol. 30: 497–502.
  • Riley M.A. and D.M. Gordon. 1999. The ecological role of bacteriocins in bacterial competition. Trends Microbiol. 7: 129–133.
  • Rintoul M.R., B.F. de Arcuri, R.A. Salomon, R.N. Farias and R.D. Morero. 2001. The antibacterial action of microcin J25: evidence for disruption of cytoplasmic membrane energization in Salmonella newport. FEMS Microbiol. Lett. 204: 265–270.
  • Rodríguez E., C. Gaggero and M. Lavina. 1999. The structural gene for microcin H47 encodes a peptide precursor with antibiotic activity. Antimicrob. Agents Chemother. 43: 2176–2182.
  • Rodriguez J.M., M.I. Martinez and J. Kok. 2002. Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria. Crit. Rev. Food Sci. Nutr. 42: 91–121.
  • Rolfe R.D. 2000. The role of probiotic cultures in the control of gastrointestinal health. J. Nutr. 130: 396S–402S.
  • Ross K.F., C.W. Ronson and J.R. 1993. Tagg. Isolation and characterization of the lantibiotic salivaricin A and its structural gene salA from Streptococcus salivarius 20P3. Appl. Environ. Microbiol. 59: 2014–2021.
  • Salminen S., A.C. Ouwehand and E. Isolauri. 1998. Clinical application of probiotic bacteria. Int. Dairy J. 8: 563–572.
  • Salomón R.A. and R.N. Farías. 1992. Microcin 25, a novel antimicrobial peptide produced by Escherichia coli. J. Bacteriol. 174: 7428–7435.
  • Sánchez J., D.B. Diep, C. Herranz, I.F. Nes, L.M. Cintas and P.E. Hernández. 2007. Amino acid and nucleotide sequence, adjacent genes, and heterologous expression of hirancin JM79, a sec-dependent bacteriocin produced by Enterococcus hirae DCH5, isolated from Mallard ducks (Anas platyrhynchos). FEMS Microbiol. Lett. 270: 227–236.
  • Sánchez-Barrena M.J., M. Martínez-Ripoll, A. Gálvez, E. Valdivia, M. Maqueda, V. Cruz and A. Albert. 2003. Structure of bacteriocin AS-48: from soluble state to membrane bound state. J. Mol. Biol. 334: 541–549.
  • Sánchez-Hidalgo M., M. Montalbán-López, R. Cebrián, E. Valdivia, M. Martínez-Bueno and M. Maqueda. 2011. AS-48 bacteriocin: close to perfection. Cell Mol. Life Sci. 68: 2845–2857.
  • Sand S.L., T.M. Haug, J. Nissen-Meyer and O. Sand. 2007. The bacterial peptide pheromone plantaricin A permeabilizes cancerous, but not normal, rat pituitary cells and differentiates between the outer and inner membrane leaflet. J. Membr. Biol. 216: 61–71.
  • Sanders M.E. 2000. Consideration for use of probiotic bacteria to modulate human health. J. Nutr. 130: 384S–390S.
  • Santagati M., M. Scillato, F. Patanè, C. Aiello and S. Stefani. 2012. Bacteriocin-producing oral streptococci and inhibition of respiratory pathogens. FEMS Immunol. Med. Microbiol. 65: 23–31.
  • Schillinger U., R. Geigen and W.H. Holzapfel. 1996. Potential of antagonistic microorganisms and bacteriocins for the biological preservation of foods. Trends Food Sci. Technol. 7: 158–164.
  • Schramm E., J. Mende, V. Braun and R.M. Kamp. 1987. Nucleotide sequence of the colicin B activity gene cba: consensus pentapeptide among TonB-dependent colicins and receptors. J. Bacteriol. 169: 3350–3357.
  • Shelburne C.E., F.Y. An, V. Dholpe, A. Ramamoorthy, D.E. Lopatin and M.S. Lantz. 2007. The spectrum of antimicrobial activity of the bacteriocin subtilosin A. J. Antimicrob. Chemother. 59: 297–300.
  • Słońska A. and D. Klimuszko. 2010. Bacteriocins of probiotic rods of the Lactobacillus genus (in Polish). Post. Mikrobiol. 40: 87–96.
  • Šmajs D., H. Pilsl and V. Braun. 1997. Colicin U, a novel colicin produced by Shigella boydii. J. Bacteriol. 179: 4919–4928.
  • Šmarda J. and D. Šmajs. 1998. Colicins – exocellular lethal proteins of Escherichia coli. Folia Microbiol. 43: 563–582.
  • Steinka I. 2009. Technology innovations as a factor of food safety (in Polish). Ann. Acad. Med. Gedan. 39: 123–132.
  • Szkaradkiewicz A.K. and J. Stopa. 2008. Lactobacillus spp. of oral cavity microflora in chronic periodontitis. Pol. J. Environ. Stud. 17: 236–242.
  • Szkaradkiewicz A.K., T.M. Karpiński, A. Zeidler, M. Wyganowska-Świątkowska and A. Szkaradkiewicz. 2011. Protective effect of oral lactobacilli in pathogenesis of chronic periodontitis. J. Physiol. Pharmacol. 62: 685–689.
  • Szkaradkiewicz A.K. and T.M. Karpiński. 2013. Probiotics and prebiotics. J. Biol. Earth Sci. 3: M42–M47.
  • Thumm G. and F. Gotz. 1997. Studies on prolysostaphin processing and characterization of the lysostaphin immunity factor (Lif) of Staphylococcus simulans biovar staphylolyticus. Mol. Microbiol. 23: 1251–1265.
  • Tichaczek P.S., R.F. Vogel and W.P. Hammes. 1993. Cloning and sequencing of curA encoding curvacin A, the bacteriocin produced by Lactobacillus curvatus LTH1174. Arch. Microbiol. 160: 279–283.
  • Toba M., H. Masaki and T. Ohta. 1988. Colicin E8, a DNase which indicates an evolutionary relationship between colicins E2 and E3. J. Bacteriol. 170: 3237–3242.
  • Tomita H. and D.B. Clewell. 2000. A pAD1-encoded small RNA molecule, mD, negatively regulates Enterococcus faecalis pheromone response by enhancing transcription termination. J. Bacteriol. 182: 1062–1073.
  • Tomita H., E. Kamei and Y. Ike. 2008. Cloning and genetic analyses of the bacteriocin 41 determinant encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pYI14: a novel bacteriocin complemented by two extracellular components (lysin and activator) J. Bacteriol. 190: 2075–2085.
  • Uchimura T. and P.C.K. Lau. 1987. Nucleotide sequences from the colicin E8 operon: homology with plasmid ColE2-P9. Mol. Gen. Genet. 209: 489–493.
  • UniProtKB. 2013. Universal Protein Resource. http://www.uniprot.org/
  • van Belkum M.J. and M.E. Stiles. 2000. Nonlantibiotic antimicrobial peptides from lactic acid bacteria. Nat. Prod. Rep. 17: 323–365.
  • Venema K., T. Abee, A.J. Haandrikman, K.J. Leenhouts, J. Kok, W.N. Konings and G. Venema. 1993. Mode of action of lactococcin B, a thiol-activated bacteriocin from Lactococcus lactis. Appl. Environ. Microbiol. 59: 1041–1048.
  • Venugopal H., P.J.B. Edwards, M. Schwalbe, J.K. Claridge, D.S. Libich, J. Stepper, T. Loo, M.L. Patchett, G.E. Norris and S.M. Pascal. 2011. Structural, dynamic, and chemical characterization of a novel S-glycosylated bacteriocin. Biochem. 50: 2748–2755.
  • Vignolo G., S. Fadda, M.N. de Kairuz, A.A. de Ruiz Holgado and G. Oliver. 1996. Control of Listeria monocytogenes in ground beef by ‘Lactocin 705’, a bacteriocin produced by Lactobacillus casei CRL 705. Int. J. Food Microbiol. 29: 397–402.
  • Villarante K.I., F.B. Elegado, S. Iwatani, T. Zendo, K. Sonomoto and E.E. de Guzman. 2011. Purifcation, characterization and in vitro cytotoxicity of the bacteriocin from Pediococcus acidilactici K2a2-3 against human colon adenocarcinoma (HT29) and human cervical carcinoma (HeLa) cells. World J. Microbiol. Biotechnol. 27: 975–980.
  • Vizán J.L., C. Hernández-Chico, I. del Castillo and F. Moreno. 1991. The peptide antibiotic microcin B17 induces double-strand cleavage of DNA mediated by E. coli DNA gyrase. EMBO J. 10: 467–476.
  • Walterspiel J.N., S. Ashkenazi, A.L. Morrowand and T.G. Cleary. 1992. Effect of subinhibitory concentrations of antibiotics on extracellular Shiga-like toxin I. Infect. Immun. 20: 25–29.
  • Wescombe P.A., M. Upton, K.P. Dierksen, N.L. Ragland, S. Sivabalan, R.E. Wirawan, M.A. Inglis, C.J. Moore, G.V. Walker, C.N. Chilcott, H.F. Jenkinson and J.R. Tagg. 2006. Production of the lantibiotic salivaricin A and its variants by oral streptococci and use of a specific induction assay to detect their presence in human saliva. Appl. Environ. Microbiol. 72:1459–1466.
  • Wirawan R.E., K.M. Swanson, T. Kleffmann, R.W. Jack and J.R. Tagg. 2007. Uberolysin: a novel cyclic bacteriocin produced by Streptococcus uberis. Microbiol. 153: 1619–1630.
  • Wirawan R.E., N.A. Klesse, R.W. Jack and J.R. Tagg. 2006. Molecular and genetic characterization of a novel nisin variant produced by Streptococcus uberis. Appl. Environ. Microbiol. 72: 1148–1156.
  • Włodarczyk M. 2002. Phenotypic diversity of bacteria encoded by plasmids (in Polish). Kosmos. 51: 241–254.
  • Wolska K.I., K. Grześ and A. Kurek. 2012. Synergy between novel antimicrobials and conventional antibiotics or bacteriocins. Pol. J. Microbiol. 61: 95–104.
  • Worobo R.W., T. Henkel, M. Sailer, K.L. Roy, J.C. Vederas and M.E. Stiles. 1994. Characteristics and genetic determinant of a hydrophobic peptide bacteriocin, carnobacteriocin A, produced by Carnobacterium piscicola LV17A. Microbiology. 140: 517–526.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-0d163456-1983-4ee7-8d98-2a0d70934bbc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.