PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 31 | 4 |

Tytuł artykułu

Changes in fatty acids composition, hydrogen peroxide generation and lipid peroxidation of salt-stressed corn (Zea mays L.) roots

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Comparative study about the salt-induced oxidative stress and lipid composition has been realised in primary root tissues for two varieties of maize (Zea mays L.) in order to evaluate their responses to salt stress. The root growth, root water content (WC), hydrogen peroxide (H₂O₂) generation, lipid peroxidation, membrane stability index and the changes in the profile of fatty acids composition were investigated. Salinity impacts in term of root growth, water content, H₂O₂ generation, lipid peroxidation and membrane destabilisation were more pronounced in primary roots of Aristo than in those of Arper indicating more sensitivity of the first variety. It was confirmed by gas chromatography that the composition of fatty acids in roots of both varieties was constituted mainly by 16:0 and 18:0 as major saturated fatty acids and 18:1ω9, 18:2ω6 and 18:3ω3 as major unsaturated fatty acids. Total lipid extracts from the roots of both varieties showed that the lipid saturation level increased under salt stress, notwithstanding the increased proportion of polyunsaturated fatty acids. The changes in lipid saturation being predominantly due to decreases in oleic acid (18:1ω9) and increases in palmitic acid (16:0). However, Arper root extracts contained a lower proportion of saturated lipids than Aristo. The enhanced proportion of highly polyunsaturated fatty acids especially linolenic and eicosapentaenoic acids was considered to be the characteristic of the relatively salt tolerance in Arper roots.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

31

Numer

4

Opis fizyczny

p.787-796,fig.,ref.

Twórcy

autor
  • Institut National de Recherche en Genie Rural, Eaux et Forets (INRGREF), Unite d'Experimantation Agricole, Oued Souhail, BP 20, 8000 Nabeul, Tunisia
autor
  • Institut Superieur Agronomique de Chott-Mariem, 4042 Sousse, Tunisia
autor
  • Institut Superieur de Biotechnologie de Monastir, BP 10, 5000 Monastir, Tunisia

Bibliografia

  • Azevedo Neto AD, Prisco JT, Eneas-Filho J, de Abreu CEB, Gomes-Filho E (2006) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salttolerant and salt-sensitive maize genotypes. Environ Exp Bot 56:87–94
  • Cachorro P, Ortiz A, Cerda A (1993) Effects of saline stress and calcium on lipid composition in bean roots. Phytochemistry 32:1131–1136. doi:10.1016/S0031-9422(00)95077-5
  • Cakmak I, Horst J (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83:463–468. doi: 10.1111/j.1399-3054.1991.tb00121.x
  • Cassells AC, Curry RF (2001) Oxidative stress and physiological, epigenetic and genetic variability in plant tissue culture: implications for micropropagators and genetic engineers. Plant Cell Tissue Organ Cult 64:145–157. doi:10.1023/A:1010692104861
  • Chen S, Li J, Fritz E, Wang S, Hütermann A (2002) Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress. For Ecol Manage 168:217–230. doi:10.1016/S0378-1127(01)00743-5
  • das Neves JPC, Ferreira LFP, Vaz MM, Gazarini LC (2008) Gas exchange in the salt marsh species Atriplex portulacoides L. and Limoniastrum monopetalum L. in southern Portugal. Acta Physiol Plant 30:91–97
  • de Lacerda CF, Cambraia J, Oliva MA, Ruiz HA (2005) Changes in growth and in solute concentrations in sorghum leaves and roots during salt stress recovery. Environ Exp Bot 54:69–76
  • Demiral T, Türkan I (2006) Exogenous glycinebetaine affects growth and proline accumulation and retards senescence in two rice cultivars under NaCl stress. Environ Exp Bot 56:72–79
  • Elenkov I, Stefanov K, Dimitrova-Konaklieva S, Popov S (1996) Effect of salinity on lipid composition of Cladophora vagabunda. Phytochemistry 42:39–44
  • Eraslan F, Inal A, Gunes A, Alpaslan A (2007) Impact of exogenous salicylic acid on the growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Sci Hortic 113:120–128
  • Fujii S, Uenaka M, Nakayama S, Yamamoto R, Mantani S (2001) Effects of sodium chloride on the fatty acids composition in Boekelovia hooglandii (Ochromonadales, Chrysophyceae). Phycol Res 49:73–77
  • Hajlaoui H, Denden M, Bouslama M (2006) Effet du chlorure de sodium sur les critères morpho-physiologiques et productifs du pois chiche (Cicer arietinum L.). Ann INRGREF 8:171–187
  • Hajlaoui H, Denden M, Bouslama M (2007) Etude de la variabilité intraspécifique de tolérance au stress salin du pois chiche (Cicer arietinum L.) au stade germination. Tropicultura 25(3):168–173
  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322
  • Hung SH, Yu CW, Lin CH (2005) Hydrogen peroxide function as a stress signal in plants. Bot Bull Acad Sin 46:1–10
  • Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57:395–418
  • Jbir N, Chaı¨bi W, Ammar S, Jemmali A, Ayadi A (2001) Root growth and lignification of two wheat species differing in their sensitivity to NaCl, in response to salt stress. C R Acad Sci III 324:863–868
  • Khan MH, Panda SK (2008) Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stress. Acta Physiol Plant 30:81–89
  • Khan MH, Singha Ksh LB, Panda SK (2002) Changes in antioxidant levels in Oryza sativa L. roots subjected to NaCl-salinity stress. Acta Physiol Plant 24:145–148
  • Konieczny R, Libik M, Tuleja M, Niewiadomska E, Miszalski Z (2008) Oxidative events during in vitro regeneration of sunflower. Acta Physiol Plant 30:71–79
  • Kuiper PJC (1984) Functioning of plant cell membrane under saline conditions: membrane lipid composition and ATPase. In: Staples RC, Toenniessen GH (eds) Salinity tolerance in plants. Wiley, New York, pp 77–91
  • Liang Y, Zhang W, Chen Q, Ding R (2005) Effects of silicon on H⁺-ATPase and H⁺-PPase activity, fatty acid composition and fluidity of tonoplast vesicles from roots of salt-stressed barley (Hordeum vulgare L.). Environ Exp Bot 53:29–37
  • Lin H, Wu L (1996) Effects of salt stress on root plasma membrane characteristics of salt-tolerant and salt-sensitive Buffalograss clones. Environ Exp Bot 36:239–254
  • Loggini B, Scartazza A, Brugnoli E, Navari-Izzo F (1999) Antioxidative defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiol 119:1091–1100
  • Lutts S, Kinet JM, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot 78:389–398
  • Malkit A, Sadka A, Fisher M, Goldshlag P, Gokhman I, Zamir A (2002) Salt induction of fatty acid elongase and membrane lipid modifications in the extreme halotolerant Alga Dunaliella salina. Plant Physiol 129:1320–1329
  • Mansour MMF (1995) Changes in cell permeability and lipid content in wheat roots induced by NaCl. Biol Plant 37:143–145
  • Mansour MMF, Lee-Stadelmann OY, Stadelmann EJ (1993) Salinity stress and cytoplasmic factors. A comparison of cell permeability and lipid partiality in salt sensitive and salt resistant cultivars and lines of Triticum aestivum and Hordeum vulgare. Physiol Plant 88:141–148
  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410
  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250
  • Munns R, Termaat A (1986) Whole plant responses to salinity. Aust J Plant Physiol 13:143–160
  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237–1247
  • Panou-Filotheou H, Bosabalidis AM (2004) Root structural aspects associated with copper toxicity in oregano (Origanum vulgare subsp. hirtum). Plant Sci 166:1497–1504
  • Patterson BD, Mackae EA, Ferguson IB (1984) Estimation of hydrogen peroxide in plant extracts using titanium (IV). Anal Biochem 139:487–492
  • Qiujie D, Bin Y, Shaobai H (1997) Response of oxidative stress defense systems in rice (Oryza sativa) leaves with supplemental UV B radiation. Physiol Plant 101:301–308
  • Schutter ME, Dick RP (2000) Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil Sci Soc Am J 64:1659–1668
  • Ślesak I, Libik M, Karpinska B, Karpinski S, Miszalski Z (2007) The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochim Pol 54:39–50
  • Surjus A, Durand M (1996) Lipid changes in soybean root membranes in response to salt treatment. J Exp Bot 47:17–23
  • Upchurch RG (2008) Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol Lett 30:967–977
  • Vaidyanathan H, Sivakumar P, Chakrabarty R, Thomas G (2003) Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.)-differential response in salt-tolerant and sensitive varieties. Plant Sci 165:1411–1418
  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539
  • Wu J, Seliskar DM, Gallagher JL (1998) Stress tolerance in the marsh plant Spartina patens: impact of NaCl on growth and root plasma membrane lipid composition. Physiol Plant 102:307–317
  • Zhang W, Chen Q, Liu Y (2002) Relationship between H⁺-ATPase activity and fluidity of tonoplast in barley roots under NaCl stress. Acta Bot Sin 44:292–296
  • Zhang M, Barg R, Yin M, Gueta-Dahan Y, Leikin-Frenkel A, Salts Y, Shabtai S, Ben-Hayyim G (2005) Modulated fatty acid desaturation via overexpression of two distinct ω-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. Plant J 44:361–371
  • Zhao FG, Qin P (2005) Protective effects of exogenous fatty acids on root tonoplast function against salt stress in barley seedlings. Environ Exp Bot 53:215–223
  • Zhong H, Läuchli A (1994) Spatial distribution of solutes K⁺, Na⁺, Ca⁺⁺ and their deposition rates in the growth zone of primary cotton roots: effects of NaCl and CaCl₂. Planta 194:31–34

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-0cf8a98e-1ff4-49a8-8311-401968309c4c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.