Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 79 | 2 |
Tytuł artykułu

Autism spectrum disorder and mercury toxicity: use of genomic and epigenetic methods to solve the etiologic puzzle

Warianty tytułu
Języki publikacji
Autism spectrum disorder (ASD) is an increasingly prevalent neurodevelopmental condition of unknown etiology. Mercury is a common, highly neurotoxic heavy metal. The similarities of neurologic manifestations of mercury exposure and ASD raise an intriguing hypothetical question: Is ASD, at least partially, a manifestation of mercury toxicity? The fetus is particularly vulnerable to mercury exposure from the “double jeopardy” combination of the genetics of his mother and his own genetics, as relates to mercury toxicity. In this paper, I review the evidence suggesting relationships between ASD and mercury toxicity. I suggest ways to confirm these relationships with genetic and epigenetic research. I propose a hypothesis associating mercury toxicity with ASD. This may present opportunities for further research in prevention and treatment of ASD.
Słowa kluczowe
Opis fizyczny
  • Yampa Valley Medical Associates, Steamboat Springs, USA
  • Abu-Elneel K, Liu T, Gazzaniga FS, Nishimura Y, Wall DP, Geschwind DH, Lao K, Kosik KS (2008) Heterogeneous dysregulation of microRNAs across the autism spectrum. Neurogenetics 9: 153–161.
  • Adams JB, Baral M, Geis E, Mitchell J, Ingram J, Hensley A, Zappia I, Newmark S, Gehn E, Rubin RA, Mitchell K, Bradstreet J, El-Dahr JM (2009) The severity of autism is associated with toxic metal body burden and red blood cell glutathione levels. J Toxicol 2009: 532640.
  • Adams JB, Romdalvik J, Ramanujam VM, Legator MS (2007) Mercury, lead, and zinc in baby teeth of children with autism versus controls. J Toxicol Environ Health A 70: 1046–1051.
  • Ander BP, Barger N, Stamova B, Sharp FR, Schumann CM (2015) Atypical miRNA expression in temporal cortex associated with dysregulation of immune, cell cycle, and other pathways in autism spectrum disorders. Mol Autism 6: 37.
  • Andreoli V, Sprovieri F (2017) Genetic aspects of susceptibility to mercury toxicity: an overview. Int J Environ Res Public Health 14: pii: E93.
  • Arrifano GPF, de Oliveira MA M, Souza-Monteiro JR, Paraense RO, Ribeiro-Dos-Santos A, Vieira JRDS, Silva ALDC, Macchi BM, do Nascimento JLM, Burbano RMR, Crespo-Lopez ME (2018) Role for apolipoprotein E in neurodegeneration and mercury intoxication. Front Biosci (Elite Ed) 10: 229–241.
  • Austin DW, Spolding B, Gondalia S, Shandley K, Palombo EA, Knowles S, Walder K (2014) Genetic variation associated with hypersensitivity to mercury. Toxicol Int 21: 236–241.
  • Bakulski KM, Fallin MD (2014) Epigenetic epidemiology: promises for public health research. Environ Mol Mutagen 55: 171–183.
  • Bakulski KM, Lee H, Feinberg JI, Wells EM, Brown S, Herbstman JB, Witter FR, Halden RU, . Caldwell K, Mortensen ME, Jaffe AE, Moye J Jr, Caulfield LE, Pan Y, Goldman LR, Feinberg AP, Fallin MD (2015) Prenatal mercury concentration is associated with changes in DNA methylation at TCEANC2 in newborns. Int J Epidemiol 44: 1249–1262.
  • Barbone F, Rosolen V, Mariuz M, Parpinel M, Casetta A, Sammartano F, Ronfani L, Vecchi Brumatti L, Bin M, Castriotta L, Valent F, Little DL, Mazej D, Snoj Tratnik J, Miklavcic Visnjevec A, Sofianou K, Spiric Z, Krsnik M, Osredkar J, Neubauer D, Kodric J, Stropnik S, Prpic I, Petrovic O, Vlasic-Cicvaric I, Horvat M (2019) Prenatal mercury exposure and child neurodevelopment outcomes at 18 months: Results from the Mediterranean PHIME cohort. Int J Hyg Environ Health 222: 9–21.
  • Baskin DS, Ngo H, Didenko VV(2003)Thimerosal induces DNA breaks, caspase-3 activation, membrane damage, and cell death in cultured human neurons and fibroblasts. Toxicol Sci 74: 361–368.
  • Basu N, Goodrich JM, Head J (2014) Ecogenetics of mercury: from genetic polymorphisms and epigenetics to risk assessment and decision-making. Environ Toxicol Chem 33: 1248–1258.
  • Bernard S, Enayati A, Redwood L, Roger H, Binstock T (2001) Autism: a novel form of mercury poisoning. Med Hypotheses 56: 462–471.
  • Bjorklund G, Dadar M, Mutter J, Aaseth J (2017) The toxicology of mercury: Current research and emerging trends. Environ Res 159: 545–554.
  • Bjorkman L, Lundekvam BF, Laegreid T, Bertelsen BI, Morild I, Lilleng P, Lind B, Palm B, Vahter M (2007) Mercury in human brain, blood, muscle and toenails in relation to exposure: an autopsy study. Environ Health 6: 30.
  • Blanusa M, Orct T, Vihnanek Lazarus M, Sekovanic A, Piasek M (2012) Mercury disposition in suckling rats: comparative assessment following parenteral exposure to thiomersal and mercuric chloride. J Biomed Biotechnol 2012: 256965.
  • Burbacher TM, Shen DD, Liberato N, Grant KS, Cernichiari E, Clarkson T (2005) Comparison of blood and brain mercury levels in infant monkeys exposed to methylmercury or vaccines containing thimerosal. Environ Health Perspect 113: 1015–1021.
  • Butler AA, Webb WM, Lubin FD (2016) Regulatory RNAs and control of epigenetic mechanisms: expectations for cognition and cognitive dysfunction. Epigenomics 8: 135–151.
  • Buyske ST, Williams A, Mars AE, Stenroos ES, Ming SX, Wang R, Sreenath M, Factura MF, Reddy C, Lambert GH, Johnson WG (2006) Analysis of case-parent trios at a locus with a deletion allele: association of GSTM1 with autism. BMC Genet 7: 8.
  • Cirnigliaro M, Barbagallo C, Gulisano M, Domini CN, Barone R, Barbagallo D, Ragusa M, Di Pietro C, Rizzo R, Purrello M (2017) Expression and regulatory network analysis of miR-140–3p, a new potential serum biomarker for autism spectrum disorder. Front Mol Neurosci 10: 250.
  • Coles BF, Kadlubar FF (2003) Detoxification of electrophilic compounds by glutathione S-transferase catalysis: determinants of individual response to chemical carcinogens and chemotherapeutic drugs? Biofactors 17: 115–130.
  • Cookson MR, Pentreath VW (1996) Protective roles of glutathione in the toxicity of mercury and cadmium compounds to C6 glioma cells. Toxicol In Vitro 10: 257–264.
  • Desoto MC, Hitlan RT (2007) Blood levels of mercury are related to diagnosis of autism: a reanalysis of an important data set. J Child Neurol 22: 1308–1311.
  • DeStefano F (2007)Vaccines and autism: evidence does not support a causal association. Clin Pharmacol Ther 82: 756–759.
  • Dorea JG, Farina M, Rocha JB (2013) Toxicity of ethylmercury (and Thimerosal): a comparison with methylmercury. J Appl Toxicol 33: 700–711.
  • Drescher O, Dewailly E, Diorio C, Ouellet N, Sidi EA, Abdous B, Valera B, Ayotte P (2014) Methylmercury exposure, PON1 gene variants and serum paraoxonase activity in Eastern James Bay Cree adults. J Expo Sci Environ Epidemiol 24: 608–614.
  • Ely JT (2001) Mercury induced Alzheimer’s disease: accelerating incidence? Bull Environ Contam Toxicol 67: 800–806.
  • Engstrom K, Love TM, Watson GE, Zareba G, Yeates A, Wahlberg K, Alhamdow A, Thurston SW, Mulhern M, McSorley EM, Strain JJ, Davidson PW, Shamlaye CF, Myers GJ, Rand MD, van Wijngaarden E, Broberg K (2016) Polymorphisms in ATP-binding cassette transporters associated with maternal methylmercury disposition and infant neurodevelopment in mother-infant pairs in the Seychelles Child Development Study. Environ Int 94: 224–229.
  • Feinberg AP (2018) The key role of epigenetics in human disease prevention and mitigation. N Engl J Med 378: 1323–1334.
  • Feinberg JI, Bakulski KM, Jaffe AE, Tryggvadottir R, Brown SC, Goldman LR, Croen LA, Hertz-Picciotto I, Newschaffer CJ, Fallin MD, Feinberg AP (2015) Paternal sperm DNA methylation associated with early signs of autism risk in an autism-enriched cohort. Int J Epidemiol 44: 1199–1210.
  • Gallagher CM, Goodman MS (2010) Hepatitis B vaccination of male neonates and autism diagnosis, NHIS 1997–2002. J Toxicol Environ Health A 73: 1665–1677.
  • Garrecht MD, Austin W (2011) The plausibility of a role for mercury in the etiology of autism: a cellular perspective. Toxicol Environ Chem 93: 1251–1273.
  • Geier DA, Audhya T, Kern JK, Geier MR (2010) Blood mercury levels in autism spectrum disorder: Is there a threshold level? Acta Neurobiol Exp 70: 177–186.
  • Geier DA, Geier MR (2004) A comparative evaluation of the effects of MMR immunization and mercury doses from thimerosal-containing childhood vaccines on the population prevalence of autism. Med Sci Monit 10: PI33–9.
  • Geier DA, Geier MR (2006a) An evaluation of the effects of thimerosal on neurodevelopmental disorders reported following DTP and Hib vaccines in comparison to DTPH vaccine in the United States. J Toxicol Environ Health A 69: 1481–1495.
  • Geier DA, Geier MR (2006b) A meta-analysis epidemiological assessment of neurodevelopmental disorders following vaccines administered from 1994 through 2000 in the United States. Neuro Endocrinol Lett 27: 401–413.
  • Geier DA, Geier MR (2007) A prospective study of thimerosal-containing Rho(D)-immune globulin administration as a risk factor for autistic disorders. J Matern Fetal Neonatal Med 20: 385–390.
  • Geier DA, Kern JK, Garver CR, Adams JB, Audhya T, Nataf R, Geier MR (2009) Biomarkers of environmental toxicity and susceptibility in autism. J Neurol Sci 280: 101–108.
  • Geier DA, Kern JK, Geier MR (2009) A prospective study of prenatal mercury exposure from maternal dental amalgams and autism severity. Acta Neurobiol Exp 69: 189–197.
  • Geier MR, Geier DA (2003) Neurodevelopmental disorders after thimerosal-containing vaccines: a brief communication. Exp Biol Med 228: 660–664.
  • Ghahramani Seno MM, Hu P, Gwadry FG, Pinto D, Marshall CR, Casallo G, Scherer SW (2011) Gene and miRNA expression profiles in autism spectrum disorders. Brain Res 1380: 85–97.
  • Godfrey ME, Wojcik DP, Krone CA (2003) Apolipoprotein E genotyping as a potential biomarker for mercury neurotoxicity. J Alzheimers Dis 5: 189–195.
  • Gogoi M, Chatterjee A (2016) Vaccines and autism: a misconception that persists. S D Med 69: 465–467.
  • Goodrich JM, Wang Y, Gillespie B, Werner R, Franzblau A, Basu N (2011) Glutathione enzyme and selenoprotein polymorphisms associate with mercury biomarker levels in Michigan dental professionals. Toxicol Appl Pharmaco 257: 301–308.
  • Grandjean P, Landrigan PJ (2006) Developmental neurotoxicity of industrial chemicals. Lancet 368: 2167–2178.
  • Grjean P, Weihe P, White RF, Debes F, Araki S, Yokoyama K, Murata, Sorensen KN, Dahl R, Jorgensen PJ (1997) Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury. Neurotoxicol Teratol 19: 417–428.
  • Gundacker C, Gencik M, Hengstschlager M (2010) The relevance of the individual genetic background for the toxicokinetics of two significant neurodevelopmental toxicants: mercury and lead. Mutat Res 705: 130–140.
  • Harry GJ, Harris MW, Burka LT (2004) Mercury concentrations in brain and kidney following ethylmercury, methylmercury and Thimerosal administration to neonatal mice. Toxicol Lett 154: 183–189.
  • Hewitson L, Lopresti BJ, Stott C, Mason NS, Tomko J (2010) Influence of pediatric vaccines on amygdala growth and opioid ligand binding in rhesus macaque infants: A pilot study. Acta Neurobiol Exp 70: 147–164.
  • Hicks SD, Ignacio C, Gentile K, Middleton FA (2016) Salivary miRNA profiles identify children with autism spectrum disorder, correlate with adaptive behavior, and implicate ASD candidate genes involved in neurodevelopment. BMC Pediatr 16: 52.
  • Hirsch‑Reinshagen V, Burgess BL, Wellington CL (2009) Why lipids are important for Alzheimer disease? Mol Cell Biochem 326: 121–129.
  • Hu VW (2013) From genes to environment: using integrative genomics to build a “systems-level” understanding of autism spectrum disorders. Child Dev 84: 89–103.
  • Hu Z, Yang Y, Zhao Y, Yu H, Ying X, Zhou D, Zhong J, Zheng Z, Liu J, Pan R, Zhang W, Cheng F, Duan S (2018) APOE hypermethylation is associated with autism spectrum disorder in a Chinese population. Exp Ther Med 15: 4749–4754.
  • Humphrey ML, Cole MP, Pendergrass JC, Kiningham KK (2005) Mitochondrial mediated thimerosal-induced apoptosis in a human neuroblastoma cell line (SK-N-SH). Neurotoxicology 26: 407–416.
  • Ida-Eto M, Oyabu A, Ohkawara T, Tashiro TY, Narita N, Narita M (2011) Embryonic exposure to thimerosal, an organomercury compound, causes abnormal early development of serotonergic neurons. Neurosci Lett 505: 61–64.
  • Ida-Eto M (2013) Prenatal exposure to organomercury, thimerosal, persistently impairs the serotonergic and dopaminergic systems in the rat brain: implications for association with developmental disorders. Brain Dev 35: 261–264.
  • James SJ, Cutler P, Melnyk S, Jernigan S, Janak L, Gaylor DW, Neubrander JA (2004) Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr 80: 1611–1617.
  • James SJ, Melnyk S, Jernigan S, Cleves MA, Halsted CH, Wong DH, Cutler P, Bock K, Boris M, Bradstreet JJ, Baker SM, Gaylor DW (2006) Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. Am J Med Genet B Neuropsychiatr Genet 141B: 947–956.
  • James SJ, Slikker W 3rd, Melnyk S, New E, Pogribna M, Jernigan S (2005) Thimerosal neurotoxicity is associated with glutathione depletion: protection with glutathione precursors. Neurotoxicology 26: 1–8.
  • Julvez J, Smith GD, Golding J, Ring S, Pourcain BS, Gonzalez JR, Grandjean P (2013) Prenatal methylmercury exposure and genetic predisposition to cognitive deficit at age 8 years. Epidemiology 24: 643–650.
  • Jyonouchi H, Geng L, Streck DL, Dermody JJ, Toruner GA (2017) MicroRNA expression changes in association with changes in interleukin-1ss/interleukin10 ratios produced by monocytes in autism spectrum disorders: their association with neuropsychiatric symptoms and comorbid conditions (observational study). J Neuroinflammation 14: 229.
  • Kanner L (1995) Follow-up study of eleven autistic children originally reported in 1943. 1971 (in French). Psychiatr Enfant 38: 421–461.
  • Kern JK, Geier DA, Sykes LK, Haley BE, Geier MR (2016) The relationship between mercury and autism: A comprehensive review and discussion. J Trace Elem Med Biol 37: 8–24.
  • Lakshmi Priya MD, Geetha A (2011) Level of trace elements (copper, zinc, magnesium and selenium) and toxic elements (lead and mercury) in the hair and nail of children with autism. Biol Trace Elem Res 142: 148–158.
  • Lee RH, Mills EA, Schwartz N, Bell MR, Deeg KE, Ruthazer ES, Marsh-Armstrong N, Aizenman CD (2010) Neurodevelopmental effects of chronic exposure to elevated levels of pro-inflammatory cytokines in a developing visual system. Neural Dev 5: 2.
  • Li Q, Kappil MA, Li A, Dassanayake PS, Darrah TH, Friedman AE, Friedman M, Lambertini L, Landrigan P, Stodgell CJ, Xia Y, Nanes JA, Aagaard KM, Schadt EE, Murray JC, Clark EB, Dole N, Culhane J, Swanson J, Varner M, Moye J, Kasten C, Miller RK, Chen J (2015) Exploring the associations between microRNA expression profiles and environmental pollutants in human placenta from the National Children’s Study (NCS). Epigenetics 10: 793–802.
  • Llop S, Engstrom K, Ballester F, Franforte E, Alhamdow A, Pisa F, Tratnik JS, Mazej D, Murcia M, Rebagliato M, Bustamante M, Sunyer J, Sofianou-Katsoulis A, Prasouli A, Antonopoulou E, Antoniadou I, Nakou S, Barbone F, Horvat M, Broberg K (2014) Polymorphisms in ABC transporter genes and concentrations of mercury in newborns-evidence from two Mediterranean birth cohorts. PLoS One 9: e97172.
  • Llop S, Tran V, Ballester F, Barbone F, Sofianou-Katsoulis A, Sunyer J, Engstrom K, Alhamdow A, Love TM, Watson GE, Bustamante M, Murcia M, Iniguez C, Shamlaye CF, Rosolen V, Mariuz M, Horvat M, Tratnik JS, Mazej D, van Wijngaarden E, Davidson PW, Myers GJ, Rand MD, Broberg K (2017) CYP3A genes and the association between prenatal methylmercury exposure and neurodevelopment. Environ Int 105: 34–42.
  • Mahley RW (2016) Apolipoprotein E: from cardiovascular disease to neurodegenerative disorders. J Mol Med 94: 739–746.
  • Makani S, Gollapudi S, Yel L, Chiplunkar S, Gupta S (2002) Biochemical and molecular basis of thimerosal-induced apoptosis in T cells: a major role of mitochondrial pathway. Genes Immun 3: 270–278.
  • McGuinness TM (2015) Update on autism spectrum disorder: vaccines, genomes, and social skills training. J Psychosoc Nurs Ment Health Serv 53: 27–30.
  • McMahon AW, Iskander JK, Haber P, Braun MM, Ball R (2008) Inactivated influenza vaccine (IIV) in children <2 years of age: examination of selected adverse events reported to the Vaccine Adverse Event Reporting System (VAERS) after thimerosal-free or thimerosal-containing vaccine. Vaccine 26: 427–429.
  • Ming XW, Johnson G, Stenroos ES, Mars A, Lambert GH, Buyske S (2010) Genetic variant of glutathione peroxidase 1 in autism. Brain Dev 32: 105–109.
  • Monnet-Tschudi FM, Zurich G, Boschat C, Corbaz A, Honegger P (2006) Involvement of environmental mercury and lead in the etiology of neurodegenerative diseases. Rev Environ Health 21: 105–117.
  • Mundalil Vasu M, Anitha A, Thanseem I, Suzuki K, Yamada K, Takahashi T, Wakuda T, Iwata K, Tsujii M, Sugiyama T, Mori N (2014) Serum microRNA profiles in children with autism. Mol Autism 5: 40.
  • Mutter J, Curth A, Naumann J, Deth R, Walach H (2010) Does inorganic mercury play a role in Alzheimer’s disease? A systematic review and an integrated molecular mechanism. J Alzheimers Dis 22: 357–374.
  • Mutter J, Naumann J, Sadaghiani C, Schneider R, Walach H (2004) Alzheimer disease: mercury as pathogenetic factor and apolipoprotein E as a moderator. Neuro Endocrinol Lett 25: 331–339.
  • Mutter J, Naumann J, Schneider R, Walach H (2007) Mercury and Alzheimer’s disease (in German). Fortschr Neurol Psychiatr 75: 528–538.
  • Napier MD, Poole C, Satten GA, Ashley-Koch A, Marrie RA, Williamson DM (2016) Heavy metals, organic solvents, and multiple sclerosis: An exploratory look at gene-environment interactions. Arch Environ Occup Health 71: 26–34.
  • Ng S, Lin CC, Hwang YH, Hsieh WS, Liao HF, Chen PC (2013) Mercury, APOE, and children’s neurodevelopment. Neurotoxicology 37: 85–92.
  • Ng, S, Lin CC, Jeng SF, Hwang YH, Hsieh WS, Chen PC (2015) Mercury, APOE, and child behavior. Chemosphere 120: 123–130.
  • Olczak M, Duszczyk M, Mierzejewski P, Meyza K, Majewska MD (2011) Persistent behavioral impairments and alterations of brain dopamine system after early postnatal administration of thimerosal in rats. Behav Brain Res 223: 107–118.
  • Palmer RF, Blanchard S, Stein Z, Mandell D, Miller C (2006) Environmental mercury release, special education rates, and autism disorder: an ecological study of Texas. Health Place, 12: 203–209.
  • Parajuli RP, Goodrich JM, Chou HN, Gruninger SE, Dolinoy DC, Franzblau A, Basu N (2016) Genetic polymorphisms are associated with hair, blood, and urine mercury levels in the American Dental Association (ADA) study participants. Environ Res, 149: 247–258.
  • Prpic I, Milardovic A, Vlasic-Cicvaric I, Spiric Z, Radic Nisevic J, Vukelic P, Snoj Tratnik J, Mazej D, Horvat M (2017) Prenatal exposure to low-level methylmercury alters the child’s fine motor skills at the age of 18 months. Environ Res, 152: 369–374.
  • Rahbar MH, Samms-Vaughan M, Ma J, Bressler J, Loveland KA, Hessabi M, Dickerson AS, Grove ML, Shakespeare-Pellington S, Beecher C, McLaughlin W, Boerwinkle E (2015) Interaction between GSTT1 and GSTP1 allele variants as a risk modulating-factor for autism spectrum disorders. Res Autism Spectr Disord 12: 1–9.
  • Raiford KL, Shao Y, Allen IC, Martin ER, Menold MM, Wright HH, Abramson RK, Worley G, DeLong GR, Vance JM, Cuccaro ML, Gilbert JR, Pericak-Vance MA (2004) No association between the APOE gene and autism. Am J Med Genet B Neuropsychiatr Genet 125B: 57–60.
  • Rowland IR, Robinson RD, Doherty RA (1984) Effects of diet on mercury metabolism and excretion in mice given methylmercury: role of gut flora. Arch Environ Health 39: 401–408.
  • Sanders AP, Burris HH, Just AC, Motta V, Amarasiriwardena C, Svensson K, Oken E, Solano-Gonzalez M, Mercado-Garcia A, Pantic I, Schwartz J, Tellez-Rojo MM, Baccarelli AA, Wright RO (2015) Altered miRNA expression in the cervix during pregnancy associated with lead and mercury exposure. Epigenomics 7: 885–896.
  • Sandin S, Lichtenstein P, Kuja-Halkola, Hultman RC, Larsson H, Reichenberg A (2017) The heritability of autism spectrum disorder. JAMA 318: 1182–1184.
  • Sandin S, Lichtenstein P, Kuja-Halkola R, Larsson H, Hultman CM, Reichenberg A (2014) The familial risk of autism. JAMA 311: 1770–1777.
  • Sarafian TA, Vartavarian L, Kane DJ , Bredesen DE, Verity MA (1994) bcl-2 expression decreases methyl mercury-induced free-radical generation and cell killing in a neural cell line. Toxicol Lett 74: 149–155.
  • Schumann CM, Sharp FR, Ander BP, Stamova B (2017) Possible sexually dimorphic role of miRNA and other sncRNA in ASD brain. Mol Autism 8: 4.
  • Seko Y, Miura T, Takahashi M, Koyama T (1981) Methyl mercury decomposition in mice treated with antibiotics. Acta Pharmacol Toxicol 49: 259–265.
  • Shenker BJ, Pankoski L, Zekavat A, Shapiro IM (2002) Mercury-induced apoptosis in human lymphocytes: caspase activation is linked to redox status. Antioxid Redox Signal 4: 379–389.
  • Smith JC, Farris FF (1996) Methyl mercury pharmacokinetics in man: a reevaluation. Toxicol Appl Pharmacol 137: 245–252.
  • Smith M, Flodman PL, Gargus JJ, Simon MT, Verrell K, Haas R, Reiner GE, Naviaux R, Osann K, Spence MA, Wallace DC (2012) Mitochondrial and ion channel gene alterations in autism. Biochim Biophys Acta 1817: 1796–1802.
  • Snoj Tratnik J, Falnoga I, Trdin A, Mazej D, Fajon V, Miklavcic A, Kobal AB, Osredkar J, Sesek Briski A, Krsnik M, Neubauer D, Kodric J, Stropnik S, Gosar D, Lesnik Musek P, Marc J, Jurkovic Mlakar S, Petrovic O, Vlasic-Cicvaric I, Prpic I, Milardovic A, Radic Nisevic J, Vukovic D, Fisic E, Spiric Z, Horvat M (2017) Prenatal mercury exposure, neurodevelopment and apolipoprotein E genetic polymorphism. Environ Res 152: 375–385.
  • Spalletta G, Bernardini S, Bellincampi L, Federici G, Trequattrini A, Ciappi F, Bria P, Caltagirone C, Bossu P (2007) Glutathione S-transferase P1 and T1 gene polymorphisms predict longitudinal course and age at onset of Alzheimer disease. Am J Geriatr Psychiatry 15: 879–887.
  • Spencer M, Takahashi N, Chakraborty S, Miles J, Shyu CR (2018) Heritable genotype contrast mining reveals novel gene associations specific to autism subgroups. J Biomed Inform 77: 50–61.
  • Stehr-Green P, Tull P, Stellfeld M, Mortenson PB, Simpson D (2003) Autism and thimerosal-containing vaccines: lack of consistent evidence for an association. Am J Prev Med 25: 101–106.
  • Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, Roses AD (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci 90: 1977–1981.
  • Sulkowski ZL, Chen T, Midha S, Zavacki AM, Sajdel-Sulkowska EM (2012) Maternal thimerosal exposure results in aberrant cerebellar oxidative stress, thyroid hormone metabolism, and motor behavior in rat pups; sex- and strain-dependent effects. Cerebellum 11: 575–586.
  • Sykes LK, Geier DA, King PG, Kern JK, Haley BE, Chaigneau CG, Megson MN, Love JM, Reeves RE, Geier MR (2014) Thimerosal as discrimination: vaccine disparity in the UN Minamata Convention on mercury. Indian J Med Ethics 11: 206–218.
  • Theoharides TC, Tsilioni I, Patel AB, Doyle R (2016) Atopic diseases and inflammation of the brain in the pathogenesis of autism spectrum disorders. Transl Psychiatry 6: e844.
  • Theoharides TC, Zhang B (2011) Neuro-inflammation, blood-brain barrier, seizures and autism. J Neuroinflammation 8: 168.
  • Thomas Curtis J, Chen Y, Buck DJ, Davis RL (2011) Chronic inorganic mercury exposure induces sex-specific changes in central TNFalpha expression: importance in autism? Neurosci Lett 504: 40–44.
  • Thompson WW, Price C, Goodson B, Shay DK, Benson P, Hinrichsen VL, Lewis E, Eriksen E, Ray P, Marcy SM, Dunn J, Jackson LA, Lieu TA, Black S, Stewart G, Weintraub ES, Davis RL, DeStefano F, Team Vaccine Safety Datalink (2007) Early thimerosal exposure and neuropsychological outcomes at 7 to 10 years. N Engl J Med 357: 1281–1292.
  • Tokumoto M, Lee JY, Shimada A, Tohyama C, Satoh M (2018) Glutathione has a more important role than metallothionein-I/II against inorganic mercury-induced acute renal toxicity. J Toxicol Sci 43: 275–280.
  • Vaccaro TDS, Sorrentino JM, Salvador S, Veit T, Souza DO, de Almeida RF (2018) Alterations in the microrna of the blood of autism spectrum disorder patients: effects on epigenetic regulation potential biomarkers. Behav Sci 8: pii: E75.
  • Vance JE, Hayashi H (2010) Formation and function of apolipoprotein E-containing lipoproteins in the nervous system. Biochim Biophys Acta 1801: 806–818.
  • Verstraeten T, Davis RL, DeStefano F, Lieu TA, Rhodes PH, Black SB, Shinefield H, Chen RT, Team Vaccine Safety Datalink (2003) Safety of thimerosal-containing vaccines: a two-phased study of computerized health maintenance organization databases. Pediatrics 112: 1039–1048.
  • Westphal GA, Schnuch A, Schulz TG, Reich K, Aberer W, Brasch J, Koch P, Wessbecher R, Szliska C, Bauer A, Hallier E (2000) Homozygous gene deletions of the glutathione S-transferases M1 and T1 are associated with thimerosal sensitization. Int Arch Occup Environ Health 73: 384–388.
  • Woods JS, Heyer NJ, Echeverria D, Russo JE, Martin MD, Bernardo MF, Luis HS, Vaz L, Farin FM (2012) Modification of neurobehavioral effects of mercury by a genetic polymorphism of coproporphyrinogen oxidase in children. Neurotoxicol Teratol 34: 513–521.
  • Woods JS, Heyer NJ, Russo JE, Martin MD, Farin FM (2014) Genetic polymorphisms affecting susceptibility to mercury neurotoxicity in children: summary findings from the Casa Pia Children’s Amalgam clinical trial. Neurotoxicology 44: 288–302.
  • Woods JS, Heyer NJ, Russo JE, Martin MD, Pillai PB, Farin FM (2013) Modification of neurobehavioral effects of mercury by genetic polymorphisms of metallothionein in children. Neurotoxicol Teratol 39: 36–44.
  • Wu YE, Parikshak NN, Belgard TG, Geschwind DH (2016) Genome wide, integrative analysis implicates microRNA dysregulation in autism spectrum disorder. Nat Neurosci 19: 1463–1476.
  • Yel L, Brown LE, Su K, Gollapudi S, Gupta S (2005) Thimerosal induces neuronal cell apoptosis by causing cytochrome c and apoptosis-inducing factor release from mitochondria. Int J Mol Med 16: 971–977.
  • Yip BHK, Bai D, Mahjani B, Klei L, Pawitan Y, Hultman CM, Grice DE, Roeder, Buxbaum JD, Devlin B, Reichenberg A, Sandin S (2018) Heritable variation, with little or no maternal effect, accounts for recurrence risk to autism spectrum disorder in Sweden. Biol Psychiatry 83: 589–597.
  • Yochum C L, Bhattacharya P, Patti L, Mirochnitchenko O, Wagner GC (2010) Animal model of autism using GSTM1 knockout mice and early post-natal sodium valproate treatment. Behav Brain Res 210: 202–210.
  • Young HA, Geier DA, Geier MR (2008) Thimerosal exposure in infants and neurodevelopmental disorders: an assessment of computerized medical records in the Vaccine Safety Datalink. J Neurol Sci 271: 110–118.
  • Yu D, Jiao X, Cao T, Huang F (2018) Serum miRNA expression profiling reveals miR-486–3p may play a significant role in the development of autism by targeting ARID1B. Neuroreport 29: 1431–1436
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.