Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 44 | 3 |
Tytuł artykułu

Age and growth of three coastal - pelagic tunas (Actinopterygii: Perciformes: Scombridae) in the Florida Straits, USA: blackfin tuna, Thunnus atlanticus, little tunny, Euthynnus alletteratus, and skipjack tuna, Katsuwonus pelamis

Treść / Zawartość
Warianty tytułu
Języki publikacji
Background. Understanding the life history of a species is essential for fully understanding its role within an ecosystem. However, many of the fish species of high ecological value have not been studied due to their less prominent roles in local recreational and commercial fisheries in comparison to other targeted species. These valuable fishes are also important trophic linkages between small neritic fishes and large, economically valuable apex predators. This study describes for the first time the yearly age and growth patterns of three small tuna species inhabiting South Florida (USA) waters: blackfin tuna, Thunnus atlanticus (Lesson, 1831); little tunny, Euthynnus alletteratus (Rafinesque, 1810); and skipjack tuna, Katsuwonus pelamis (Linnaeus, 1758). Materials and Methods. Tuna specimens were collected in two ways: via donations obtained from various fishing tournaments and charter captains in the areas of the Florida Straits as well as hook-and-line catches performed especially for this project. Age determination was based on sagittal otolith hyaline deposition patterns. Marginal increment analysis was used as an indirect validation method. Growth parameters were determined by comparison of the fish fork length and the hyaline band measurements. Results. Two hyaline bands formed each year in all three species—one in winter and one in summer. The von Bertalanffy growth equation produced a growth rate for each species: blackfin tuna, L¥ = 95.34 cm, K = 0.28, and t0 = –1.53; little tunny, L¥ = 77.93 cm, K = 0.69, and t0 = –0.69; and skipjack tuna, L¥ = 112.76 cm, K = 0.24, and t0 = –1.70. Parameters of each resulting von Bertalanffy equation were compared among species showing that little tunny grew the fastest, but skipjack had the largest estimated size. Results were also compared with growth rates currently used in stock assessments by fisheries management organizations, such as the International Commission for the Conservation of Atlantic Tunas (ICCAT). Conclusion. Sectioned otoliths indicate two bands a year for these three species in the Florida Straits. Results were comparable to other studies, with a similar finding of two bands per year in hard parts for these species. Further knowledge of these populations will aid in stock assessments for these species and the ongoing shift to ecosystem-based management plans.
Słowa kluczowe
Opis fizyczny
  • Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, Senator George G.Kirkpatrick Marine Lab, 11350 SW 153rd Court, Cedar Key, FL 32625, USA
  • Nova Southeastern University Oceanographic Center, 8000 North Ocean Drive, Dania Beach, FL 33004, USA
  • Allman R.J., Grimes C.B. 1998. Growth and mortality of Littre tunny (Euthynnus alletteratus) larvae off the Mississippi River plume and Panama City, Florida. Bulletin of Marine Science 62 (1): 189–197.
  • Anderson R.O., Neumann R.M. 1996. Length, weight, and associated structural indices. Pp. 447–482. In: Murphy B.B., Willis D.W. (eds.) Fisheries techniques. 2nd edn. American Fisheries Society, Bethesda, MD, USA.
  • Andrade H.A., Kinas P.G. 2003. Growth models for the skipjack tuna (Katsuwonus pelamis) caught in the southeastern coast of South America. Collected Volume of Scientific Papers, ICCAT 55 (5): 1916–1925.
  • Anonymous 2006. Final consolidated Atlantic highly migratory species fishery management plan. National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Office of Sustainable Fisheries, Highly Migratory Species Management Division, Silver Spring, MD, USA.
  • Appukuttan K.K., Radhakrishnan Nair P.N., Kunhikoya K.K. 1977. Studies on the fishery and growth rate of oceanic skipjack Katsuwonus pelamis (Linnaeus) at Minicoy Island from 1966 to 1969. Indian Journal of Fisheries 24 (1–2): 33–47.
  • Bard F.X., Cayre P., Diouf T. 1993. Migrations. Pp. 105–145. In: Fonteneau A., Marcille J. (eds.) Resources, fishing and biology of the tropical tunas of the Eastern Central Atlantic. Fisheries Technical Paper No. 292, FAO, Rome.
  • Batts B.S. 1972. Age and growth of the skipjack tuna, Katsumonus pelamis (Linnnaeus), in North Carolina waters.Chesapeake Science 13 (4): 237–244. DOI: 10.2307/1351107
  • Beamish R.J., Fournier D.A. 1981. A method for comparing the precision of a set of age-determinations. Canadian Journal of Fisheries and Aquatic Sciences 38 (8): 982–983.DOI: 10.1139/f81-132
  • Botsford L.W., Castilla J.C., Peterson C.H. 1997. The management of fisheries and marine ecosystems. Science. 277 (5325): 509–515. DOI: 10.1126/science.277.5325.509
  • Campana S.E. 2001. Accuracy, precision and quality control In age determination, including a review of the use and abuse of age validation methods. Journal of Fisheries Biology 59 (2):197–242. DOI: 10.1111/j.1095-8649.2001.tb00127.x
  • Chi K.-S., Yang R.-T. 1973. Age and growth of skipjack tuna in the waters around the southern part of Taiwan. Acta Oceanographica Taiwanica 3: 199–222.
  • Chur V.N., Zharov V.L. 1983. Determination of age and growth rate of the skipjack tuna, Katsuwonus pelamis (L.)(Scombridae), from the southeastern part of the Gulf of Guinea. Journal of Ichthyology 23 (3): 53–67.
  • Collette B.B., Nauen C.E. 1983. FAO species catalogue: Vol. 2. Scombrids of the world. An annotated and illustrated catalogue of tunas, mackerels, bonitos and related species known to date. FAO Fisheries Synopsis No. 125. Vol. 2.
  • Das M. 1994. Age-determination and longevity in fishes. Gerontology 40 (2–4): 70–96. DOI: 10.1159/000213580
  • Doray M., Stéquert B., Taquet M. 2004. Age and growth of blackfin tuna (Thunnus atianticus) caught under moored fish aggregating devices, around Martinique Island. Aquatatic Living Resources 17 (1): 13–18. DOI: 10.1051/alr:2004009
  • Gaertner D., Delgado De Molina A., Ariz J., Pianet R., Hallier J.P. 2008. Variability of the growth parameters of the skipjack tuna (Katsuwonus pelamis) among areas in the eastern Atlantic: Analysis from tagging data within a metaanalysis approach. Aquatic Living Resources 21 (4): 349–356. DOI: 10.1051/alr:2008049
  • García Coll I., Álvarez-Lajonchere L.S., Noyola Ugalde J.I. 1984. Determinación de la edad y el crecimiento del bonito Katsuwonus pelamis (Linnaeus) y la albacora Thunnus atlanticus (Lesson) en la región suroccidental de Cuba en El ańo 1979. Revista de Investigaciones Marinas 5: 95–126.
  • Gillanders B.M., Ferrell D.J., Andrew N.L. 1999. Aging methods for yellowtail kingfish, Seriola lalandi, and results from age- and size-based growth models. Fishery Bulletin 97 (4): 812–827.
  • Haddon M. 2001. Modelling and quantitative methods in fisheries. Chapman and Hall/CRC Press, Boca Raton FL, USA.
  • Hajjej G., Hattour A., Hajjej A., Jarboui O., Bouain A. 2012. Age and growth of little tunny, Euthynnus alletteratus (Rafinesque, 1810), from the Tunisian Mediterranean coasts. Cahiers de Biologie Marine 53 (1): 113–122.
  • Hare J.A., Hoss D.E., Powell A.B., KoniecznaM., Peters D.S., Cummings S.R., Robbins R. 2001. Larval distribution and abundance of the family Scombridae and Scombrolabracidae in the vicinity of Puerto Rico and the Virgin Islands. Bulletin of the Sea Fisheries Institute 2 (153): 13–29.
  • Hoffmann A.A., Sgrò C.M. 2011. Climate change and evolutionary adaptation. Nature 470 (7335): 479–485. DOI: 10.1038/nature09670
  • Ihde T.F., Chittenden M.E. 2002. Comparison of calcified structures for aging spotted seatrout. Transactions of the American Fisheries Society 131 (4): 634–642. DOI: 10.1577/1548-8659(2002)131<0634:cocsfa>;2
  • Isermann D.A., Meerbeek J.R., Scholten G.D., Willis D.W. 2003. Evaluation of three different structures used for walleye age estimation with emphasis on removal and processing times. North American Journal of FisheriesManagement 23 (2): 625–631. DOI: 10.1577/1548-8675(2003)023<0625:eotdsu>;2
  • Isermann D.A., Wolter M.H., Breeggemann J.J. 2010.Estimating black crappie age: An assessment of dorsal spines and scales as nonlethal alternatives to otoliths. North American Journal of Fisheries Management 30 (6):1591–1598. DOI: 10.1577/m10-133.1
  • James P.S.B.R., Jayaprakash A.A. 1988. Current knowledge of the distribution, behaviour and abundance of tunas with suggestions for the development of tuna fishery in the Indian EEZ. Pp. 211–219. In: Joseph M. M. (ed.) The First Indian Fisheries Forum, Proceedings. Asian Fisheries Society, Indian Branch, Mangalore, India.
  • James P.S.B.R., Srinath M., Jayaprakash A.A. 1987. Stock assessment of tunas in the seas around India. Pp. 353–366. In: Collective volume of working documents presented at the Expert Consultation on stock Assessment of Tunas in the Indian Ocean. Held in Colombo, Sri Lanka, 28 November–2 December 1985. Indo-Pacific Tuna Development and Management Programme.
  • Johnson A.G. 1983. Comparison of dorsal spines and vertebrae as aging structures for little tunny, Euthynnus alletteratus, from the northeast Gulf of Mexico. Pp. 111–115. In: Prince E.D.,Pulos L.M. (eds.) Proceedings of the International Workshop on Age Determination of Oceanic Pelagic Fishes: Tunas, Billfishes, and Sharks. Miami, Florida, February 15–18,1982. US Department of Commerce, NOAA, National Marine Fisheries Service. Technical Report No. 8.
  • Kahraman A.E., Oray I.K. 2001. The determination of age and growth parameters of Atlantic little tunny Euthynnus alleteratus [sic] (Rafinesque 1810), in Turkish waters. Collected Volume of Scientific Papers, ICCAT 52 (2): 719–832.
  • Lessa R., Duarte-Neto P. 2004. Age and growth of yellowfin tuna (Thunnus albacares) in the western equatorial Atlantic, using dorsal fin spines. Fisheries Research 69 (2): 157–170.DOI: 10.1016/j.fishres.2004.05.007
  • Li K., Yao J.L., Chen Y.F. 2006. Age and growth of an endemic cyprinid fish, Spinibarbus yunnanensis, from Lake Fuxian, China. Journal of Freshwater Ecology 21 (3): 405–409. DOI: 10.1080/02705060.2006.9665017
  • Lowerre-Barbieri S.K., Chittenden jr. M.E., Jones C.M. 1994. A comparison of a validated otolith method to age weakfish, Cynoscion regalis, with the traditional scale method. Fishery Bulletin 92 (3): 555–568.
  • Menard F., Fonteneau A., Gaertner D., Nordstrom V., Stequert B., Marchal E. 2000. Exploitation of small Tunis by a purse-seine fishery with fish aggregating devices and their feeding ecology in an eastern tropical Atlantic ecosystem. ICES Journal of Marine Science 57 (3): 525–530. DOI:10.1006/jmsc.2000.0717
  • Mohan M., Kunhikoya K.K. 1985. Age and growth of Katsuwonus pelamis (Linnaeus) and Thunnus albacares (Bonnaterre) from Minicoy waters. Central Marine Fisheries Research Institute Bulletin 36: 143–148.
  • Neilson J.D., Manickhand-Heileman S., Singh-Renton S. 1994. Assessment of hard parts of blackfin tuna (Thunnus atlanticus) for determining age and growth. ICCAT Collective Volume of Scientific Papers 42 (2): 369–376.
  • Pikitch E.K., Santora C., Babcock E.A., Bakun A., Bonfil R.,Conover D.O., Dayton P., Doukakis P., Fluharty D.,Heneman B., Houde E.D., Link J., Livingston P.A.,Mangel M., McAllister M.K., Pope J., Sainsbury K.J.2004. Ecosystem-based fishery management. Science 305 (5682): 346–347. DOI: 10.1126/science.1098222
  • Prince E.D., Lee D.W., Wilson C.A., Dean J.M. 1986. Longevity and age validation of a tag-recaptured Atlantic sailfish, Istiophorus platypterus, using dorsal spines and otoliths. Fisheries Bulletin 84 (3): 493–502.
  • Richards W.J., Bullis H.R. 1978. Status of the knowledge on the biology and resources of the blackfin tuna, Thunnus atlanticus (Pisces, Scombridae). Collected Volume of Scientific Papers, ICCAT 7 (1): 130–141.
  • Richardson D.E., Llopiz J.K., Guigand C.M., Cowen R.K. 2010. Larval assemblages of large and medium-sized pelagic species in the Straits of Florida. Progress In Oceanography 86 (1–2): 8–20. DOI: 10.1016/j.pocean.2010.04.005
  • Santamaria N., Bello G., Corriero A., Deflorio M., Vassallo-Agius R., Bök T. 2009. Age and growth of Atlantic bluefin tuna, Thunnus thynnus (Osteichthyes: Thunnidae), in the Mediterranean Sea. Journal of Applied Ichthyology 25 (1): 38–45. DOI: 10.1111/j.1439-0426.2009.01191.x
  • Sipe A.M., Chittenden jr.M.E. 2002. A comparison of calcified structures for aging bluefish in the Chesapeake Bay region. Transactions of the American Fisheries Society 131 (4): 783–790. DOI: 10.1577/1548-8659(2002)131<0783: acocsf>;2
  • Tanabe T., Kayama S., Ogura M., Tanaka S. 2003. Daily increment formation in otoliths of juvenile skipjack tuna Katsuwonus pelamis. Fisheries Science 69 (4): 731–737. DOI: 10.1046/j.1444-2906.2003.00680.x
  • Uchiyama J.H., Struhsaker P. 1981. Age and growth of skipjack tuna, Katsuwonus pelamis, and yellowfin tuna, Thunnus albacares, as indicated by daily growth increments of sagittae. Fishery Bulletin 79 (1): 151–162.
  • Valeiras X., Macías D., Gómez M.J., Lema L., Godoy D., Ortiz de Urbina J.O., de la Serna J.M. 2008. Age and growth of Atlantic little tuna (Euthynnus alletteratus) in the western Mediterranean Sea. Collected Volume of Scientific Papers, ICCAT 62 (5): 1638–1648.
  • Zaboukas N., Megalofonou P. 2007. Age estimation of the Atlantic bonito in the eastern Mediterranean Sea using dorsal spines and validation of the method. Scientia Marina 71 (4): 691–698.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.