Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 31 | 5 |
Tytuł artykułu

Sodium transport in basil

Treść / Zawartość
Warianty tytułu
Języki publikacji
In order to diversify the production of plants with pharmacological interest, it is important to understand the mechanisms involved in their tolerance to environmental constraints, such as salinity. Basil (Ocimum basilicum), known for its therapeutic uses, has been claimed to be salt tolerant, but physiological aspects of this behavior remain unknown. Since salt tolerance is known to be associated with several characteristics concerning Na⁺ transport to leaves, we studied this function in hydroponically grown basil. We analyzed the response of 30-day-old seedlings to 25–50 mM NaCl applied for 15 days. Growth was poorly affected, indicating that these concentrations corresponded to the tolerated salinity range. Leaves accumulated Na⁺ at relatively high concentration, without dehydrating. Potassium concentration in leaf tissues was maintained close to control level, indicating that K⁺ was 15- to 25-fold preferred over Na⁺ for ion transport and deposition. Collection of xylem sap on detopped plants revealed that this preference was only 10-fold for ion introduction into root xylem sap. Short-term (24 h) changes in Na⁺ distribution between organs after stem (steam) girdling suggested that Na⁺ downward recirculation by phloem occurred. Although modest, this transport might have augmented K⁺ selectivity of ion deposition in leaves.
Słowa kluczowe
Opis fizyczny
  • Physiologie et Biochimie de la Tolerance au Sel des Plantes, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia
  • Physiologie et Biochimie de la Tolerance au Sel des Plantes, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia
  • Physiologie et Biochimie de la Tolerance au Sel des Plantes, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia
  • Physiologie et Biochimie de la Tolerance au Sel des Plantes, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia
  • Physiologie et Biochimie de la Tolerance au Sel des Plantes, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia
  • Apse MP, Blumwald E (2007) Na⁺ transport in plants. FEBS Lett 581:2247–2254. doi:10.1016/j.febslet.2007.04.014
  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt
  • tolerance conferred by overexpression of a vacuolar Na⁺/H⁺ antiport in Arabidopsis. Science 285:1256–1285. doi:10.1126/science.285.5431.1256
  • Berthomieu P, Conejero G, Nublat A, Brackenbury WJ, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F, Gosti F, Simonneau T, Essah PA, Tester M, Very AA, Sentenac H, Casse F (2003) Functional analysis of AtHKT1 in Arabidopsis shows that Na⁺ recirculation by the phloem is crucial for salt tolerance. EMBO J 22:2004–2014. doi:10.1093/emboj/cdg207
  • Davenport RJ, Munoz-Mayor A, Jha D, Essah PA, Rus A, Tester M (2007) The Na⁺ transporter AtHKT1;1 controls retrieval of Na⁺ from the xylem in Arabidopsis. Plant Cell Environ 30:497–507. doi:10.1111/j.1365-3040.2007.01637.x
  • Flowers TJ, Hajibagheri MA, Yeo AR (1991) Ion accumulation in the cell walls of rice plants growing under saline conditions: evidence for the Oertli hypothesis. Plant Cell Environ 14:319–325. doi:10.1111/j.1365-3040.1991.tb01507.x
  • Garthwaite AJ, Millhollon EP, Lucas MC (2005) Salt tolerance in wild Hordeum species is associated with restricted entry of Na⁺ and Cl⁻ into the shoots. J Exp Bot 56:2365–2378. doi:10.1093/jxb/eri229
  • Gorham J (1992) Salt tolerance in plants. Sci Prog 76:273–285
  • Grignon N, Touraine B, Durand M (1989) 6(5) Carboxyfluorescein as a tracer of phloem sap translocation. Am J Bot 76:871–877. doi: 10.2307/2444542
  • Herrera E (2005) Soil test interpretation, guide A-122. New Mexico State University.
  • Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil, Circular 347. California Agriculture Experiment Station, Berkley, p 32
  • James RA, Romola J, Davenport RJ, Munns R (2006) Physiological characterization of two genes for Na⁺ exclusion in Durum wheat, Nax1 and Nax2. Plant Physiol 142:1537–1547. doi: 10.1104/pp.106.086538
  • Jeschke WD, Hartung W (2000) Root–shoot interactions in mineral nutrition. Plant Soil 226:57–69. doi:10.1023/A:1026431408238
  • Jeschke WD, Pate JS (1991) Modelling of the partitioning, assimilation and storage of nitrate within root and shoot organs of castor bean (Ricinus communis L.). J Exp Bot 42:1091–1103. doi:10.1093/jxb/42.9.1091
  • Kramer D (1983) The possible role of transfer cells in the adaptation of plants to salinity. Physiol Plant 58:549–555. doi:10.1111/j. 1399-3054.1983.tb05741.x
  • Lacan D, Durand M (1996) Na⁺–K⁺ exchange at the xylem/symplast boundary. Its significance in the salt sensitivity of soybean. Plant Physiol 110:705–711
  • Lohaus G, Hussmann M, Pennewiss K, Schneider H, Zhu JJ, Sattelmacher B (2000) Solute balance of a maize (Zea mays L.) source leaf as affected by salt treatment with special emphasis on phloem retranslocation and ion leaching. J Exp Bot 51:1721–1732. doi:10.1093/jexbot/51.351.1721
  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250. doi:10.1046/j.0016-8025.2001.00808.x
  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. doi:10.1146/annurev.arplant. 59.032607.092911
  • Nayak AK, Gautam RK, Sharma DK, Mishra VK, Singh CS, Jha SK (2008) Growth, oil yield, and ion partitioning in basil grown on sodic soils. Commun Soil Sci Plant Anal 39:833–844. doi: 10.1080/00103620701880891
  • Prasad A, Lal RK, Chattopadhyay A, Yadav VK, Yadav A (2007) Response of basil species to soil sodicity stress. Commun Soil Sci Plant Anal 38:2705–2715. doi:10.1080/00103620701662943
  • Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146. doi:10.1038/ng1643
  • Speer M, KaiserWM(1991) Ion relations of symplastic and apoplastic space in leaves from Spinacia oleracea L. and Pisum sativum L. under salinity. Plant Physiol 97:990–997. doi:10.1104/pp.97. 3.990
  • Sunarpi, Horie T, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan WY, Leung HY, Hattori K, Konomi M, Osumi M, Yamagami M, Schroeder JI, Uozumi N (2005) Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na unloading from xylem vessels to xylem parenchyma cells. Plant J 44:928–938. doi:10.1111/j.1365-313X.2005.02595.x
  • Szabolcs I (1992) Salinization of soil and water and its relation to desertification. Desertif Control Bull 21:32–37
  • Tester M, Davenport R (2003) Na⁺ tolerance and Na⁺ transport in higher plants. Ann Bot (Lond) 91:503–527. doi:10.1093/aob/mcg058
  • Touraine B, Grignon N, Grignon C (1988) Charge balance in NO₃⁻- fed soybean. Estimation of K⁺ and carboxylate recirculation. Plant Physiol 88:605–612. doi:10.1104/pp.88.3.605
  • Watson R, Pritchard J, Malone M (2001) Direct measurement of sodium and potassium in the transpiration stream of saltexcluding and non-excluding varieties of wheat. J Exp Bot 52:1873–1881. doi:10.1093/jexbot/52.362.1873
  • White PJ (1997) The regulation of K⁺ influx into roots of rye (Secale cereale L.) by negative feedback via the K⁺ flux from shoots to root in the phloem. J Exp Bot 48:2063–2073. doi:10.1093/jxb/48.12.2063
  • Wolf O, Munns R, Tonnet ML, Jeschke WD (1991) The role of the stem in the partitioning of Na⁺ and K⁺ in salt-stressed barley. J Exp Bot 42:697–704. doi:10.1093/jxb/42.6.697
Rekord w opracowaniu
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.