PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 3 |

Tytuł artykułu

Mitigation of wastewater-borne chorpyrifos in constructed wetlands: an ecological suitability assessment by nacrophyte and microbial responses

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Plants and microorganisms are the main biotic compartments for phytoaccumulation and metabolic transformation of organic contaminants in constructed wetlands (CWs). However, how they cope with special pollutants during the treatment process has not been well characterized. In this study, responses of Iris pseudoacorus (I. pseudoacorus) and microbial communities were intensively investigated in pilot-scale CWs treating wastewater-borne chlorpyrifos, an organic phosphorus pesticide. Chlorpyrifos was associated with inhibited plant growth, decreased photosynthetic activity, and a significant increase in oxidative products. Superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities were affected by chlorpyrifos, whereas catalase (CAT) activity was almost unaffected. Although chlorpyrifos stimulated the antioxidant system, there was little indication of oxidative damage in I. pseudoacorus. Urease, β-glucosidase, and phosphatase activities in substrate were elevated by 73.73%, 17.20%, and 16.23%, respectively, which may indicate enhancement of nitrogen, carbon, and phosphorus cycling. Fatty acid methyl ester (FAME) profiles showed that aerobic prokaryotes, which are likely the functional group responsible for chlorpyrifos degradation, increased from 16.37% to 31.32% after chlorpyrifos addition. Biomarkers for fungal/bact and trans/cis remained unchanged after the chlorpyrifos addition, suggesting that chlorpyrifos did not negatively influence the substrate microbial communities in CWs.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

3

Opis fizyczny

p.1279-1287,fig.,ref.

Twórcy

autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
  • University of Chinese Academy of Sciences, Beijing 100049, China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Chinap

Bibliografia

  • 1. CRAWFORD K.D., WEINSTEIN J.E., HEMINGWAY R.E., GARNER T.R., GLOBENSKY G. A Survey of Metal and Pesticide Levels in Stormwater Retention Pond Sediments in Coastal South Carolina. Arch. Environ. Con. Tox. 58 (1), 9, 2010.
  • 2. SINGH D.P., KHATTAR J.I.S., NADDA J., SINGH Y., GARG A., KAUR N., GULATI A. Chlorpyrifos degradation by the cyanobacterium Synechocystis sp strain PUPCCC 64. Environ. Sci. Pollut. Res. 18 (8), 1351, 2011.
  • 3. XU D.J., JIN M.Q., GU Z.Y., XU X.L., XU G.C. Review of the Application of Chlorpyrifos in the Control of Rice Pest Insects. Modern Agrochemicals (in Chinese). 6 (2), 6, 2007.
  • 4. USEPA. Pesticide Industry Sales and Usage Report, Washington, DC; 2011.
  • 5. JIANG Z.H. Analysis of marketing and development trend of chlorpyrifos. The New Century of Agrochem. 10, 45, 2010 [In Chinese].
  • 6. PEDERSEN J.A., YEAGER M.A., SUFFET I.H. Organophosphorus insecticides in agricultural and residential runoff: Field observations and implications for total maximum daily load development. Environ. Sci. Technol. 40 (7), 2120, 2006.
  • 7. ROGERS M.R., STRINGFELLOW W.T. Partitioning of chlorpyrifos to soil and plants in vegetated agricultural drainage ditches. Chemosphere. 75 (1), 109, 2009.
  • 8. STEARMAN G.K., GEORGE D.B., CARLSON K., LANSFORD S. Pesticide removal from container nursery runoff in constructed wetland cells. J. Environ. Qual. 32 (4), 1548, 2003.
  • 9. ELSAESSER D., BLANKENBERG A.G.B., GEIST A., MAEHLUM T., SCHULZ R. Assessing the influence of vegetation on reduction of pesticide concentration in experimental surface flow constructed wetlands: Application of the toxic units approach. Ecol. Eng. 37 (6), 955, 2011.
  • 10. WANG P., YANG X., HUANG W.W., ZHANG M., LU W.H., ZHAO H.T., WANG J., LIU H. L., DONG A. J., ZHANG H., XU R.B., ZOU P., CHENG C.L., ZHANG Y.C., JING J. Effect of pesticide 1- 6-chloro-3-methyl-pyridyl-8-nitro-7-methyl-1 2 3 5 6 7-hexahydro imidazo (1,2a) -pyridine when responding to a wheat plant’s antioxidant defense system. Food Chem. 146, 569, 2014.
  • 11. FRANCO A.R., PEREIRA S.I.A., CASTRO P.M.L. Effect of benfluralin on Pinus pinea seedlings mycorrhized with Pisolithus tinctorius and Suillus bellinii - Study of plant antioxidant response. Chemosphere. 120, 422, 2015.
  • 12. MITTLER R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7 (9), 405, 2002.
  • 13. FRÖHLICH M., KUTSCHERA U. Changes in Soluble Sugars and Proteins during Development of Rye Coleoptiles. J. Plant. Physiol. 146 (1-2), 121, 1995.
  • 14. GONZÁLEZ M.G., GALLARDO J.F., GÓMEZ E., MASCIANDARO G., CECCANTI B., PAJARES S. Potential universal applicability of soil bioindicators: evaluation in three temperate ecosystems. Ciencia del suelo. 25 (2), 151, 2007.
  • 15. BALASUBRAMANIAN A., DURAIRAJPANDIAN V., ELUMALAI S., MATHIVANAN N., MUNIRAJAN A.K., PONNURAJ K. Structural and functional studies on urease from pigeon pea (Cajanus cajan). Int. J. Biol. Macromol. 58, 301, 2013.
  • 16. TURNER B. L., HOPKINS D. W., HAYGARTH P. M., OSTLE N. β-Glucosidase activity in pasture soils. Appl. Soil. Ecol. 20 (2), 157, 2002.
  • 17. SIUDA W., CHRÓST R. J. Decomposition and Utilization of Particulate Organic Matter by Bacteria in Lakes of Different Trophic Status. Pol. J. Environ. Stud. 11 (1), 53, 2002.
  • 18. SCHNEIDER K., TURRION M.B., GRIERSON P.F., GALLARDO J.F. Phosphatase activity, microbial phosphorus, and fine root growth in forest soils in the Sierra de Gata, western central Spain. Biol. Fert. Soils. 34 (3), 151, 2001.
  • 19. MERILES J.M., GIL S.V., CONFORTO C., FIGONI G., LOVERA E., MARCH G.J., GUZMAN C.A. Soil microbial communities under different soybean cropping systems: Characterization of microbial population dynamics, soil microbial activity, microbial biomass, and fatty acid profiles. Soil. Till. Res. 103 (2), 271, 2009.
  • 20. KLOSE S., ACOSTA-MARTINEZ V., AJWA H.A. Microbial community composition and enzyme activities in a sandy loam soil after fumigation with methyl bromide or alternative biocides. Soil. Biol. Biochem. 38 (6), 1243, 2006.
  • 21. MATTSSON M.K., LIU X.X., YU D., KONTRO M.H. Depth, soil type, water table, and site effects on microbial community composition in sediments of pesticidecontaminated aquifer. Environ. Sci. Pollut. Res. 22 (13), 10263, 2015.
  • 22. MUMMEY D.L., STAHL P.D., BUYER J.S. Microbial biomarkers as an indicator of ecosystem recovery following surface mine reclamation. Appl. Soil. Ecol. 21 (3), 251, 2002.
  • 23. XU J., GUO L.Q., DONG F.S., LIU X.G., WU X.H., SHENG Y., ZHANG Y., ZHENG Y.Q. Response of the soil microbial community to imazethapyr application in a soybean field. J. Environ. Sci. Heal. B. 48 (6), 505, 2013.
  • 24. ANDERSON B.S., PHILLIPS B.A., HUNT J.W., WORCESTER K., ADAMS M., KAPELLAS N., TJEERDEMA R.S. Evidence of pesticide impacts in the Santa Maria River watershed, California, USA. Environ. Toxicol. Chem. 25 (4), 1160, 2006.
  • 25. THOMATOU A.-A., ZACHARIAS I., HELA D., KONSTANTINOU I. Determination and risk assessment of pesticide residues in lake Amvrakia (W. Greece) after agricultural land use changes in the lake’s drainage basin. Int. J. Environ. Anal. Chem. 93 (7), 780, 2013.
  • 26. LIN C.C., KAO C.H. Abscisic acid induced changes in cell wall peroxidase activity and hydrogen peroxide level in roots of rice seedlings. Plant Sci. 160 (2), 323, 2001.
  • 27. KONG X.S., YI X.F. Techniques of Plant Physiological Experiment Beijing: China Agriculture Press; 2008.
  • 28. MICROBIOLOGY DEPARTMENT INSTITUTE OF SOIL SCIENCE CHINESE ACADEMY OF SCIENCES.Research Methods of Soil Microbes.: Science Press(China); 1985.
  • 29. SCHUTTER M.E., DICK R.P. Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil. Sci. Soc. Am. J. 64 (5), 1659, 2000.
  • 30. DOGANLAR Z.B. Physiological and Genetic Responses to Pesticide Mixture Treatment of Veronica beccabunga. Water Air. Soil Poll. 223 (9), 6201, 2012.
  • 31. RAMEL F., BIRTIC S., CUINE S., TRIANTAPHYLIDES C., RAVANAT J.L., HAVAUX M. Chemical Quenching of Singlet Oxygen by Carotenoids in Plants. Plant Physiol. 158 (3), 1267, 2012.
  • 32. TINOCO-OJANGUREN C., PEARCY R.W. A comparison of light quality and quantity effects on the growth and steady-state and dynamic photosyntetic characteristics of three tropical tree species. Funct. Ecol. 9, 22, 1995.
  • 33. HE H.Z., LI Y.J., CHEN T.F., HUANG X.L., GUO Q., LI S.F., YU T.H., LI H.S. Butachlor induces some physiological and biochemical changes in a rice field biofertilizer cyanobacterium. Pest. Biochem. Physiol. 105 (3), 224, 2013.
  • 34. HE H.Z., LI Y.J., CHEN T.F., HUANG X.L., GUO Q., LI S.F., YU T.H., LI H.S. Butachlor induces some physiological and biochemical changes in a rice field biofertilizer cyanobacterium. Pestic. Biochem. Phys. 105 (3), 224, 2013.
  • 35. DOS SANTOS C.M., SILVA M.D. Physiological and biochemical responses of sugarcane to oxidative stress induced by water deficit and paraquat. Acta Physiol. Plant. 37 (8), 14, 2015.
  • 36. MA A.J., HE R.H., JIANG X.Y., LIN Y.S. Effects of single and combined pollution of chlorpyrifos and acetochlor on soil enzyme activity and microbial biomass carbon. Journal of Ecology and Rural Environment (in Chinese). 24 (2), 57, 2008.
  • 37. RAHMANSYAH M., ANTONIUS S., SULISTINAH N. Phosphatase and urease instability caused by pesticides present in soil improved by grounded rice straw. ARPN J. Agr. Biol. Sci. 4 (2), 56, 2009.
  • 38. BRZEZINSKA M.S., KALWASINSKA A., LALKE-PORCZYK E., BURKOWSKA-BUT A., JANKIEWICZ U. Rhizosphere Effect of Salix viminalis L. on Soil Enzyme Activity in a Wastewater Treatment Wetland. Clean-Soil Air Water. 44 (5), 563, 2016.
  • 39. FLOCH C., CHEVREMONT A.-C., JOANICO K., CAPOWIEZ Y., CRIQUET S. Indicators of pesticide contamination: Soil enzyme compared to functional diversity of bacterial communities via Biolog® Ecoplates. Eur. J. Soil. Biol. 47 (4), 256, 2011.
  • 40. KARPUZCU M.E., SEDLAK D.L., STRINGFELLOW W.T. Biotransformation of chlorpyrifos in riparian wetlands in agricultural watersheds: Implications for wetland management. J. Hazard. Mater. 244, 111, 2013.
  • 41. FINDLAY R.H., KING G.M. Handbook of methods in aquatic microbial ecology. In: Kemp P.F., Sherr B.F., Sherr E.V., Cole J.J., editors. Quantitative description of microbial communities using lipid analysis., Lewis Publishers; 271, Boca Raton, 1993.
  • 42. TROGL J., PAVLORKOVA J., PACKOVA P., SEJAK J., KURAN P., POPELKA J., PACINA J. Indication of Importance of Including Soil Microbial Characteristics into Biotope Valuation Method. Sustainability. 8 (3), 253, 2016.
  • 43. RAJENDRAN N., MATSUDA O., IMAMURA N., URUSHIGAWA Y. Variation in Microbial Biomass and Community Structure in Sediments of Eutrophic Bays as Determined by Phospholipid Ester-Linked Fatty-Acids. Appl. Environ. Microb. 58 (2), 562, 1992.
  • 44. LAKSHMI C.V., KUMAR M., KHANNA S. Biodegradation of Chlorpyrifos in Soil by Enriched Cultures. Curr. Microbiol. 58 (1), 35, 2009.
  • 45. SILAMBARASAN S., ABRAHAM J. Kinetic studies on enhancement of degradation of chlorpyrifos and its hydrolyzing metabolite TCP by a newly isolated Alcaligenes sp JAS1. J Taiwan. Inst. Chem. E. 44 (3), 438, 2013.
  • 46. WU C.Y., CHEN N., LI Q.F., HUANG X. Research Progress in Chlorpyrifos Degrading Microorganisms and Biodegrading Mechanisms. Chinese Journal of Tropical Crops. 32 (10), 1989, 2011 [In Chinese].
  • 47. DE VRIES F.T., HOFFLAND E., VAN EEKEREN N., BRUSSAARD L., BLOEM J. Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil. Biol. Biochem. 38 (8), 2092, 2006.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-0c45f48d-ede6-4043-aecd-a2badc0675b3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.