PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2013 | 72 | 3 |

Tytuł artykułu

Formation of synovial joints and articular cartilage

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Chondrocytes differentiate from mesenchymal progenitors and produce templates (anlagen) for the developing bones. Chondrocyte differentiation is controlled by Sox transcription factors. Templates for the neighbour bones are subsequently separated by conversion of differentiated chondrocytes into non-chondrogenic cells and emergence of interzone in which joints cavitation occurs. A central role in initiating synovial joint formation plays Wnt-14/beta-catenin signalling pathway. Moreover, bone morphogenetic proteins and growth and differentiation factors are expressed at the site of joint formation. Joint cavitation is associated with increased hyaluronic acid synthesis. Hyaluronic acid facilitates tissue separation and creation of a functional joint cavity. According to the traditional view articular cartilage represents part of cartilage anlage that is not replaced by bone through endochondral ossification. Recent studies indicate, however, that peri-joint mesenchymal cells take part in interzone formation and that these interzone cells subsequently differentiate into articular chondrocytes and synovial cells. Thus, anlage chondrocytes have a transient character and disappear after cessation of growth plate function while articular chondrocytes have stable and permanent phenotype and function throughout life. (Folia Morphol 2013; 72, 3: 181–187)

Wydawca

-

Czasopismo

Rocznik

Tom

72

Numer

3

Opis fizyczny

p.181-187,fig.,ref.

Twórcy

  • Department of Histology and Embryology, Warsaw Medical University, Warsaw, Poland
autor
  • Department of Histology and Embryology, Warsaw Medical University, Chalubinskiego 5, 02-004 Warsaw, Poland
  • Department of Histology and Embryology, Warsaw Medical University, Warsaw, Poland
  • Department of Histology and Embryology, Warsaw Medical University, Warsaw, Poland

Bibliografia

  • 1. Akiyama H, Chaboissier MC, Martin JF, Schedl A, de Crombrugghe B (2002) The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev, 16: 2813–2828.
  • 2. Andersen H, Bro-Rasmussen F (1961) Histochemical studies on the histogenesis of the joints in human fetuses. Am J Anat, 108: 111–122.
  • 3. Archer CW, Dowthwaite GP, Francis-West P (2003) Development of synovial joints. Birth Defects Res (Part C), 69: 144–155.
  • 4. Archer CW, Morrison H, Pitsillides AA (1994) Cellular aspects of the development of diarthrodial joints and articular cartilage. J Anat, 184: 447–456.
  • 5. Aszodi A, Bateman JF, Hirsch E, Baranyi M, Hunziker EB, Hauser N, Bosze Z, Fassler R (1999) Normal skeletal development of mice lacking matrilin 1: redundant function of matrilins in cartilage? Mol Cell Biol, 19: 7841–7845.
  • 6. Ballard KJ, Holt SJ (1968) Cytological and cytochemical studies on cell death and digestion in the fetal rat foot: the role of macrophages and hydrolytic enzymes. J Cell Sci, 3: 245–262.
  • 7. Bi W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B (1999) Sox9 is required for cartilage formation. Nat Genet, 22: 85–89.
  • 8. Bland YA, Ashhurst DE (1996) Development and ageing of the articular cartilage of the rabbit knee joint: distribution of fibrillar collagens. Anat Embryol, 194: 607–619.
  • 9. Brunet LJ, McMahon JA, McMahon AP, Harland RM (1998) Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science, 280: 1455–1457.
  • 10. Davis AP, DP Witte, Hsieh-Li HM, Potter SS, Capecchi MR (1995) Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11. Nature, 375: 791–795.
  • 11. Day TF, Guo X, Garrett-Beal L, Yang Y (2005) Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell, 8: 739–750.
  • 12. Dy P, Smits P , Silvester A, Penzo-Méndez A, Dumitriu B, Han Y, de la Motte CA, Kingsley DM, Lefebvre V (2010) Synovial joint morphogenesis requires the chondrogenic action of Sox5 and Sox6 ingrowth plate and articular cartilage. Dev Biol, 341: 346–359.
  • 13. Edwards JCW, Francis-West PH (2001) Bone morphogenetic proteins in the development and healing of synovial joints. Semin Arthritis Rheum, 31: 33–42.
  • 14. Edwards JCW, Wilkinson LS, Jones HM, Soothill P, Henderson KJ, Worrall JG, Pitsillides AA (1994) The formation of human synovial joint cavities: a possible role for hyaluronan and CD44 in altered interzone cohesion. J Anat, 185: 355–367.
  • 15. Edwards JCW, Wilkinson LS, Soothill P, Hembry RM, Murphy G, Reynolds JJ (1996) Matrix metalloproteinases in the formation of human synovial joint cavities. J Anat, 188: 355–360.
  • 16. Francis-West PH, Abdelfattah A, Chen P, Allen C, Parish J, Ladher R, Allen S, MacPherson S, Luyten FP, Archer CW (1999) Mechanisms of GDF-5 action during skeletal development. Development, 126: 1305–1315.
  • 17. Francis-West PH, Parish J, Lee K, Archer CW (1999) BMP/GDF-signaling interactions during synovial joint development. Cell Tissue Res, 296: 111–119.
  • 18. Goldring MB (2012) Chondrogenesis, chondrocyte differentiation, and articular cartilage metabolism in health and osteoarthritis. Ther Adv Musculoskel Dis, 4: 269–285.
  • 19. Goldring MB, Tsuchimochi K, Ijiri K (2006) The control of chondrogenesis. J Cell Biochem, 97: 33–44.
  • 20. Gong Y, Krakow D, Marcelino J, Wilkin D, Chitayad D, Babul-Hyriji R, Hudgins L, Cremers CW, Cremers FP, Brunner HG, Reinker K, Rimoin DL, Cohn DH, Goodman FR, Reardon W, Patton M, Francomano CA, Warman ML (1999) Heterozygous mutations in the gene encoding noggin affect human joint morphogenesis. Nat Genet, 21: 302–304.
  • 21. Guo X, Day TF, Jiang X, Garrett-Beal L, Topol L, Yang Y (2004) Wnt/beta-catenin signaling is sufficient and necessary for synovial joint formation. Genes Dev, 18: 2404–2417.
  • 22. Han Y, Lefebvre V (2008) L-Sox5/Sox6 drive expression of the aggrecan gene in cartilage by securing binding of Sox9 to a far-upstreamenhancer. Mol Cell Biol, 28: 4999–5013.
  • 23. Hartmann C, Tabin CJ (2001) Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton. Cell, 104: 341–351.
  • 24. Hogan BL (1996) Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev, 10: 1580–1594.
  • 25. Holder N (1977) An experimental investigation into the early development of the chick elbow joint. J Embryol Exp Morphol, 39: 115–127.
  • 26. Hunziker EB (1988) Growth plate structure and function. Pathol Immunopathol Res, 7: 9–13.
  • 27. Hyde G, Dover S, Aszodi A, Wallis GA, Boot-Handford RP (2007) Lineage tracingusing matrilin-1 gene expression reveals that articular chondrocytes exist as the joint interzone forms. Dev Biol, 304: 825–833.
  • 28. Ito MM, Kido MY (2000) Morphological and biochemical re-evaluation of the process of cavitation in the rat knee joint: cellular and cell strata alterations in the interzone. J Anat, 197: 659–679.
  • 29. Iwamoto M, Tamamura Y, Koyama ., Komori T, Takeshita N, Williams JA, Nakamura T, Enomoto-Iwamoto M, Pacifici M (2007) Transcription factor ERG and joint and articular cartilage formation during mouse limb and spine skeletogenesis. Dev Biol, 305: 40–51.
  • 30. Kahn J, Shwartz Y, Blitz E, Krief S, Sharir A, Breitel DA, Rattenbach R, Relaix F, Maire P, Roundtree RB, Kingsley DM, Zelzer E (2009) Muscle contraction is necessary to maintain joint progenitor cell fate. Dev Cell, 16: 734–743.
  • 31. Kavanagh E, Abiri M, Bland YS, Ashhurst DE (2002) Division and death of cells in developing synovial joints and long bones. Cell Biol Int, 26: 679–688.
  • 32. Koyama E, Ochiai T, Rountree RB, Kingsley DM, Enomoto-Iwamoto M, Iwamoto M, Pacifici M (2007) Synovial joint formation during mouse limb skeletogenesis. Roles of Indian hedgehog signaling. Ann NY Acad Sci, 1116: 100–112.
  • 33. Koyama E, Shibukawa Y, Nagayama M, Sugito H, Young B, Yuasa T , Okabe T, Ochiai T, Kamiya N, Rountree RB, Kingsley DM, Iwamoto M, Enomoto-Iwamoto M, Pacifici M (2008) A distinct cohort of progenitor cells participates in synovial joint and articular cartilage formation during mouse limb skeletogenesis. Dev Biol, 316: 62–73.
  • 34. Koyama E, Yasuda T, Minugh-Purvis N, Kinumatsu T, Yallowitz AR, Wellik DM, Pacifici M (2010) Hox11 genes establish synovial joint organization and phylogenetic characteristics in developing mouse zeugopod skeletal elements. Development, 137: 3795–3800.
  • 35. Koyama E, Yasuda T, Wellik DM, Pacifici M (2010) Hox11 paralogous genes are required for formation of wrist and ankle joints and articular surface organization. Ann NY Acad Sci, 1192: 307–316.
  • 36. Koyama E, Young B, Nagayama M, Shibukawa Y, Enomoto-Iwamoto M, Iwamoto M, Maeda Y, Lanske B, Song B, Serra R, Pacifici M (2007) Conditional Kif3a ablation causes abnormal hedgehog signaling topography, growth plate dysfunction, and excessive bone and cartilage formation during mouse skeletogenesis. Development, 134: 2159–2169.
  • 37. Lefebvre V, Smits P (2005) Transcriptional control of chondrocyte fate and differentiation. Birth Defects Res (Part C), 75: 200–212.
  • 38. Lizarraga G, Lichtler A, Upholt WB, Kosher RA (2002) Studies on the role of Cux1 in regulation of the onset of joint formation in the developing limb. Dev Biol, 243: 44–54.
  • 39. Matsumoto K, Yingcui L, Jakuba C, Sugiyama Y, Sayo T, Okuno M, Dealy CN, Toole BP, Takeda J, Yamaguchi Y, Kosher RA (2009) Conditional inactivation of Has2 reveals a crucial role for hyaluronan in skeletal growth, patterning, chondrocyte maturation and joint formation in the developing limb. Development, 136: 2825–2835.
  • 40. Merino R, Macias D, Ganan Y, Economides AN, Wang X, Wu Q, Stahl N, Sampath KT, Varona P, Hurle JM (1999). Expression and function of Gdf 5 during digit skeletogenesis in the embryonic chick leg bud. Dev Biol, 206: 33–45.
  • 41. Mitrovic D (1977). Development of the metatarsophalangeal joint of the chick embryo: Morphological, ultrastructural and histochemical studies. Am J Anat, 150: 333–348.
  • 42. Mitrovic D (1978) Development of the diarthrodial joints in the rat embryo. Am Anat, 151: 475–486.
  • 43. Mundy C, Yasuda T, Kinumatsu T, Yamaguchi Y, Iwamoto M, Enomoto-Iwamoto M, Koyama E, Pacifici M (2011) Synovial joint formation requires local Ext1 expression and heparan sulfate production in developing mouse embryo limbs and spine. Dev Biol, 351: 70–81.
  • 44. Murphy JM, Heinegard D, McIntosh A, Sterchi D, Barry FP (1999) Distribution of cartilage molecules in the developing mouse joint. Mat Biol,18: 487–497.
  • 45. Pacifici M, Koyama E, Iwamoto M (2005) Mechanisms of synovial joint and articular cartilage formation: recent advances, but many lingering mysteries. Birth Defects Res (Part C), 75: 237–248.
  • 46. Pacifici M, Koyama E, Shibukawa Y, Wu C, Takamura Y, Enomoto-Iwamoto M, Iwamoto M (2006) Cellular and molecular mechanisms of synovial joint and articular cartilage formation. Ann NY Acad Sci, 1068: 74–86.
  • 47. Pazin DE, Gamer LW, Cox KA, Rosen V (2012) Molecular profiling of synovial joints: use of microarray analysis to identify factors that direct the development of the knee and elbow. Dev Dyn, 241: 1816–1826.
  • 48. Pfander D, Swoboda B, Kirsch T (2001) Expression of early and late differentiation markers (proliferating cell nuclear antigen, syndecan-3, annexin VI and alkaline phosphatase) by human ostearthritic chondrocytes. Am J Path, 159: 1777–1783.
  • 49. Pitsillides AA (2003) Identifying and characterizing the joint cavity-forming cell. Cell Biochem Funct, 21: 235–240.
  • 50. Pitsillides AA (2006) Early effects of embryonic movement: “a shot out of the dark”. J Anat, 208: 417–431.
  • 51. Pitsillides AA, Archer CW, Prehm P, Bavliss MT, Edwaeds JC (1995) Alterations in hyaluronan synthesis during developing joint cavitation. J Histochem Cytochem, 43: 263–273.
  • 52. Pitsillides AA, Ashhurst DE (2008) A critical evaluation of specific aspects of joint development. Dev Dyn, 237: 2284–2294.
  • 53. Rountree RB, Schoor M, Chen H, Marks ME, Harley V, Mishina Y, Kingsley DM (2004) BMP receptor signaling is required for postnatal maintenance of articular cartilage. PLoS Biol, 2: 1815–1827.
  • 54. Seki K, Hata A (2004) Indian Hedgehog gene is a target of the bone morphogenetic protein signaling pathway. J Biol Chem, 279: 18544–18549.
  • 55. Seo HS, Serra R (2007) Deletion of Tgfbr2 in Prx1-cre expressing mesenchyme results in defects in development of the long bones and joints. Dev Biol, 310: 304–316.
  • 56. Serra R, Chan C (2003) TGF-beta signaling in human skeletal and patterning disorders. Birth Defects Res (Part C), 69: 333–351.
  • 57. Sharrocks AD (2001) The ETS-domain transcription factor family. Nat Rev Mol Cell Biol, 2: 827–837.
  • 58. Spagnoli A, O’Rear L, Chandler RL, Granero-Molto F, Mortlock DP, Gorska AE, Weis JA, Longobardi L, Chytil A, Shimer K, Moses HL (2007) TGF-beta signaling is essential for joint morphogenesis. J Cell Biol, 177: 1105–1117.
  • 59. Später D, Hill TP, Gruber M, Hartmann C (2006) Role of canonical Wnt-signaling in joint formation. Eur Cell Mater, 12: 71–80.
  • 60. St-Jacques B, Hammerschmidt M,. Mcmahon AP (1999) Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev, 13: 2076–2086.
  • 61. Storm EE, Kingsley DM (1996) Joint patterning defects caused by single and double mutations in members of the bone morphogenetic protein (BMP) family. Development, 122: 3969–3979.
  • 62. Storm EE, Kingsley DM (1999) GDF5 coordinates bone and joint formation during digit development. Dev Biol, 209: 11–27.
  • 63. Tamamura Y, Otani T, Kanatani N, Koyama E, Kitagaki J, Komori T, Yamada Y, Costantini F, Wakisaka S, Pacifici M, Iwamoto M, Enomoto-Iwamoto M (2005). Developmental regulation of Wnt/beta-catenin signals is required for growth plate assembly, cartilage integrity, and endochondral ossification. J Biol Chem, 280: 19185–19195.
  • 64. Toole BP (1991) Glycosaminoglycans in morphogenesis. In: Hay ED ed. Cell biology of the extracellular matrix. Plenum Press, New York, pp. 259–294.
  • 65. Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ (1996) Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science, 273: 613–622.
  • 66. Zou H, Wieser R, Massagué J, Niswander L (1997) Distinct roles of type I bone morphogenetic protein receptors in the formation and differentiation of cartilage. Genes Dev, 11: 2191–2203.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-0c1dda48-378e-41cf-883f-8798ae5fe0d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.