Francisella tularensis are highly infectious bacteria causing a zoonotic disease called tularemia. Identification of this bacterium is based on antigen detection or PCR. The paper presents a latex agglutination test (LAT) for rapid identification of clinically relevant F. tularensis subspecies. The test can be performed within three minutes with live or inactivated bacteria. The possibility to test the inactivated samples reduces the risk of laboratory acquired infection and allows performing the test under BSL-2 conditions.
Department of Sera and Vaccines Evaluation,National Institute of Public Health – National Institute of Hygiene, Warsaw, Poland
Bibliografia
Eliasson H., T. Broman, M. Forsman and E. Bäck. 2006. Tularemia: current epidemiology and disease management. Infect. Dis. Clin. N. Am. 20: 289–311.
Formińska K., A.A. Zasada, W. Rastawicki, K. Śmietańska, D. Bander, M. Wawrzynowicz-Syczewska, M. Yanushevych, J. Niścigorska-Olsen and M. Wawszczak. 2015. Increasing role of arthropod bites in tularaemia transmission in Poland – case reports and diagnostic methods. Ann. Agric. Environ. Med. 22: 443–446.
Celli J. and T.C. Zahrt. 2013. Mechanisms of Francisella tularensis intracellular pathogenesis. Cold Spring Harb. Perspect. Med. 3: e010314.
World Health Organization. 2007. WHO guidelines on tularemia. WHO Library Cataloguing-in-Publication Data. WHO/CDS/EPR/2007.7, Geneva, Switzerland.
Koskela P. and A. Salminen. 1985. Humoral immunity against Francisella tularensis after natural infection. J. Clin. Microbiol. 22: 973–979.
Rastawicki W. and N. Wolaniuk. 2013. Comparison of usefulness of commercial ELISA Virion/Serion, homemade ELISA and tube agglutination test in serodiagnosis of tularemia. Med. Dosw. Mikrobiol. 65: 255–261.
Rastawicki W., N. Rokosz-Chudziak, A. Chróst and R. Gierczyński. 2015. Development and evaluation of a latex agglutination test for the rapid serodiagnosis of tularemia. J. Microbiol. Method. 112: 1–2.
King B.F. and B.J. Wilkinson. 1981. Binding of human immunoglobulin G to protein A in encapsulated Staphylococcus aureus. Infect. Immun. 33: 666–672.
Sumithra T.G., V.K. Chaturvedi, P.K. Gupta, S.C. Sunita, A.K. Rai, M.V.H. Kutty, U. Laxmi and M.S. Murugan. 2013. Development of a simple and rapid method for the specific identification of organism causing anthrax by slide latex agglutination. Lett. Appl. Microbiol. 58: 401–407.
Miller R.S., L. Speegle, O.A. Oyarzabal and A.J. Lastovica. 2008. Evaluation of three commercial latex agglutination tests for identification of Campylobacter spp. J. Clin. Microbiol. 46: 3546–3547.
Porter B.D., B.D. Ortika and C. Satzke. 2014. Capsular serotyping of Streptococcus pneumoniae by latex agglutination. J. Vis. Exp. 91: e51747.
Zasada A.A., K. Formińska and K. Zacharczuk. 2013. Fast identification of Yersinia pestis, Bacillus anthracis and Francisella tularensis based on conventional PCR. Pol. J. Microbiol. 62: 453–455.
Drożdż R. 2006. The use of microparticles agglutination in clinical practice. Diagn. Lab. 42: 211–222.
McLendon M.K., M.A. Apicella and L.-A.H. Allen. 2006.Francisella tularensis: taxonomy, genetics, and immunopathogene-sis of a potential agent of biowarfare. Annu. Rev. Microbiol. 60: 167–185.
Romagnani S., M.G. Giudizi, R. Biagiotti, F. Almerigogna,E. Maggi, G. Del Prete and M. Ricci. 1981. Surface immunoglobulins are involved in the interaction of protein A with human B cells and in the triggering of B cell proliferation induced by protein A-containing Staphylococcus aureus. J. Immunol. 127: 1307–1313.
Grunow R., W. Splettstoesser, S. McDonald, C. Otterbein, T. O’Brien, C. Morgan, J. Aldrich, E. Hofer, E.-J. Finke and H. Meyer. 2000. Detection of Francisella tularensis in biological specimens using capture enzyme-linked immunosorbent assay, an immunochromatographic handheld assay, and a PCR. Clin. Diagn. Lab. Immunol. 7: 86–90.