PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 23 | 2 |

Tytuł artykułu

Ferrous bisglycinate increased iron transportation through DMT1 and PepT1 in pig intestinal epithelial cells compared with ferrous sulphate

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
To study the different mechanisms of absorption of diverse iron sources, pig intestinal epithelial cells (IPEC) were incubated with various concentrations of ferrous sulphate and ferrous bisglycinate for different times to determine the expression of divalent metal transporter (DMT1), peptide transporter (PepT1), ferritin, transferrin receptor (TfR), and neutral amino acid transporter (ASCT1 and ASCT2) using RT-PCR and Western blotting. In the ferrous bisglycinate groups, the expression of DMT1 protein was higher at 24 h and a concentration of 1 mmol · l–1 (P < 0.05) and expression of PepT1 protein was higher in all treatments (P < 0.05); expression of TfR and ferritin mRNA was higher at 36 h, 0.5 mmol · l–1 and 1 mmol · l–1; and 24 h, 1 mmol · l–1; 36 h, 0.5 mmol · l–1 (P < 0.05), respectively; ASCT1 and ASCT2 mRNA expression was higher at 36 h, 0.5 mmol · l–1 (P < 0.05). We conclude that the more effective absorption of ferrous bisglycinate is associated with higher expression of iron-related transporters in IPEC cells.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

23

Numer

2

Opis fizyczny

p.153-159,fig.,ref.

Twórcy

autor
  • South China Agricultural University, College of Animal Science, Guangzhou 510642, China
autor
  • South China Agricultural University, College of Animal Science, Guangzhou 510642, China
  • National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
autor
  • South China Agricultural University, College of Animal Science, Guangzhou 510642, China
autor
  • South China Agricultural University, College of Animal Science, Guangzhou 510642, China
autor
  • South China Agricultural University, College of Animal Science, Guangzhou 510642, China
autor
  • South China Agricultural University, College of Animal Science, Guangzhou 510642, China
autor
  • South China Agricultural University, College of Animal Science, Guangzhou 510642, China
autor
  • South China Agricultural University, College of Animal Science, Guangzhou 510642, China
autor
  • South China Agricultural University, College of Animal Science, Guangzhou 510642, China

Bibliografia

  • Andrews N.C., 1999. Disorders of iron metabolism. N. Engl. J. Med. 341, 1986–1995
  • Ashmead H., 1991. Comparative intestinal absorption and subsequent metabolism of metal amino acid chelates and inorganic metal salts. Biol. Tr. Elem. Res. 306–319
  • Avissar N.E., Ziegler T.R., Wang H.T. et al., 2001. Growth factors regulation of rabbit sodium-dependent neutral amino acid transporter ATB0 and oligopeptide transporter 1 mRNAs expression after enterectomy. Jpen-Parenter Enter. 25, 65–72
  • Bode B.P., 2001. Recent molecular advances in mammalian glutamine transport. J. Nutr. 131, 2475S–2485S
  • Bovell-Benjamin A.C., Viteri F.E., Allen L.H. et al., 2000. Iron absorption from ferrous bisglycinate and ferric trisglycinate in whole maize is regulated by iron status. Amer. J. Clin. Nutr. 71, 1563–1569
  • Broer A., Brookes N., Ganapathy V. et al., 1999. The astroglial ASCT2 amino acid transporter as a mediator of glutamine efflux. J. Neurochem. 73, 2184–2194
  • Cocato M.L., Trindade Neto M.A. da, Berto D.A. et al., 2008. Bioavailability of iron in different compounds for piglets weaned at 21 days old. Rev. Bras. Zootecn. 37, 2129–2135
  • Collins J.F., Franck C.A., Kowdley K.V. et al., 2005. Identification of differentially expressed genes in response to dietary iron deprivation in rat duodenum. Amer. J. Physiol-Gastrointest. L. 288, G964–G971
  • Ettle T., Schlegel P., Roth F.X., 2008. Investigations on iron bioavailability of different sources and supply levels in piglets. J. Anim. Physiol. Anim. Nutr. 92, 35–43
  • Ezquer F., Nunez M. T., Rojas A. et al., 2006. Hereditary hemochromatosis: an opportunity for gene therapy. Biol. Res. 39, 113–24
  • Fairweather-Tait S.J., Fox T.E., Wharf S.G., Ghani N.A., 1992. A preliminary study of the bio availability of iron-and zinc-glycine chelates. Food Addit. Contam. 9, 97–101
  • Fleming M.D., Romano M.A., Su M.A. et al., 1998. Nramp2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport. Proc. Nat. Acad. Sci. USA 95, 1148–1153
  • Fleming M.D., Trenor C.C., Su M.A. et al., 1997. Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat. Genet. 16, 383–386
  • Fox T.E., Eagles J., Fairweather-Tait S.J., 1998. Bioavailability of iron glycine as a fortificant in infant foods. Amer. J. Clin. Nutr. 67, 664–668
  • Gárate M.A., Núñez M.T., 2000. Overexpression of the ferritin ironresponsive element decreases the labile iron pool and abolishes the regulation of iron absorption by intestinal epithelial (Caco-2) cells. J. Biol. Chem. 275, 1651–1655
  • Gunshin H., Mackenzie B., Berger U.V. et al.,1997. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388, 482–488
  • Hubert N., Hentze M.W., 2002. Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: implications for regulation and cellular function. Proc. Nat. Acad. Sci. USA 99, 12345–12350
  • Kanai Y., Hediger M.A., 1992. Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 360, 467–471
  • Krasucki W., Orlicki Ł., 2008. Effect of various iron preparations in the rearing of piglets. Med. weter. 64, 1037–1042
  • Krieg R.C., Dong Y., Schwamborn K. et al., 2005. Protein quantification and its tolerance for different interfering reagents using the BCA-method with regard to 2D SDS PAGE. J. Biochem. Biophys. Meth. 65, 13–19
  • Lipinski P., Starzynski R.R., Canonne-Hergaux F. et al., 2010. Benefits and risks of iron supplementation in anemic neonatal pigs. Amer. J. Pathol. 177, 1233–1243
  • Lowe J.A., Wiseman J., Cole D.J., 1994. Absorption and retention of zinc when administered as an amino-acid chelate in the dog. J. Nutr. 124, 2572S–2574S
  • Ludwiczek S., Theurl I., Artner-Dworzak E. et al., 2004. Duodenal HFE expression and hepcidin levels determine body iron homeostasis: modulation by genetic diversity and dietary iron availability. J. Molecular Med.-JMM 82, 373–382
  • Mazariegos D.I., Pizarro F., Olivares M. et al., 2004. The mechanisms for regulating absorption of Fe bis-glycine chelate and Feascorbate in Caco-2 cells are similar. J. Nutr. 134, 395–398
  • McKie A.T., Barrow D., Latunde-Dada G.O. et al., 2001. An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291, 1755–1759
  • Nicolas G., Bennoun M., Devaux I. et al., 2001. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc. Nat. Acad. Sci. USA 98, 8780–8785
  • Nicolas G., Bennoun M., Porteu A. et al., 2002. Severe iron deficiency anemia in transgenic mice expressing liver hepcidin. Proc. Nat. Acad. Sci. USA 99, 4596–4601
  • Palacin M., Estevez R., Bertran J. et al., 1998. Molecular biology of mammalian plasma membrane amino acid transporters. Physiol. Rev. 78 , 969–1054
  • Pineda O., Ashmead H.D., 2001. Effectiveness of treatment of irondeficiency anemia in infants and young children with ferrous bis-glycinate chelate. Nutrition 17, 381–384
  • Pineda O., Wayne Ashmead H.D., Perez J.M. et al., 1994. Effectiveness of iron amino acid chelate on the treatment of iron deficiency anemia in adolescents. J. Appl. Nutr. 46, 2–13
  • Pizarro F., Olivares M., Hertrampf E. et al., 2002. Iron bis-glycine chelate competes for the nonheme-iron absorption pathway. Amer. J. Clin. Nutr. 76, 577–581
  • Starzynski R.R., Lipinski P., Drapier J.C. et al., 2005. Down-regulation of iron regulatory protein 1 activities and expression in superoxide dismutase 1 knock-out mice is not associated with alterations in iron metabolism. J. Biol. Chem. 280, 4207–4212
  • Tam N.F.Y., Yao M.W.Y., 1999. Three digestion methods to determine concentrations of Cu, Zn, Cd, Ni, Pb, Cr, Mn, and Fe in mangrove sediments from Sai Keng, Chek Keng, and Sha Tau Kok, Hong Kong. Bull. Environ. Contam. Toxicol. 62, 708–716
  • Terato K., Yoshino Y., 1973. Studies on iron absorption. Digest. Dis. 18, 121–128
  • Yeung C.K., Glahn R.P., Miller D.D., 2005. Inhibition of iron uptake from iron salts and chelates by divalent metal cations in intestinal epithelial cells. J. Agr. Food Chem. 53, 132–136
  • Zerangue N., Kavanaugh M.P., 1996. ASCT-1 is a neutral amino acid exchanger with chloride channel activity. J. Biol. Chem. 271, 27991–27994

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-0bbc9ebb-07d5-466b-ac15-1eeef584e0c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.