PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 22 | 3 |
Tytuł artykułu

Influence of pitting corrosion on fatigue and corrosion fatigue of ship and offshore structures. Part II: Load - pit - crack interaction

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper has been discussed influence of stresses on general corrosion rate and corrosion pit nucleation rate and growth , whose presence has been questioned by some authors but accepted by most of them. Influence of roughness of pit walls on fatigue life of a plate suffering pit corrosion and presence of the so called „ non-damaging” pits which never lead to initiation of fatigue crack, has been presented. Possibility of prediction of pit-to-crack transition moment by two different ways, i.e. considering a pit a stress concentrator or an equivalent crack, has been analyzed. Also, influence of statistical distribution of depth of corrosion pits as well as anticorrosion protection on fatigue and corrosion fatigue has been described
Słowa kluczowe
Wydawca
-
Rocznik
Tom
22
Numer
3
Opis fizyczny
p.57-66,fig.,ref.
Twórcy
  • Faculty of Ocean Engineering and Ship Technology, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland
Bibliografia
  • 1. Melchers R.E.: Pitting corrosion of mild steel in marine immersion environment – Part 1: Maximum pit depth. Corrosion, 2004, Vol.60, No 9, pp.824-836.
  • 2. Chlistovsky, Hefferman P.J., DuQuesnay D.L., Corrosion fatigue behavior of 7075-T651 aluminum alloy subjected to periodic overloads, International Journal of Fatigue, 2007, vol.29, pp.1941-1949
  • 3. van der Walde K., Hillberry B.M., Initiation and shape development of corrosion nucleated fatigue cracks, International Journal of Fatigue, 2007, Vol.29, pp.1269-1281
  • 4. Lu B.T., Luo J.L.: Crack initiation and early propagation of X70 steel in near-neutral pH groundwater, Corrosion, 2006, No 8, Vol.62, pp. 723-731
  • 5. Dolley E.J., Lee B., Wei R.P.: The effect of pitting corrosion on fatigue life. Fatigue & Fracture of Engineering Materials & Structures, 2000, Vol.23, pp.555-560
  • 6. Ishihara S., Saka S., Nan Z.Y., Goshima T., Sunada S., Prediction of corrosion fatigue lives of aluminium alloy on the basis of corrosion pit growth law, Fatigue & Fracture of Engineering Materials & Structures, 2006, Vol.29, pp.472480
  • 7. Pidapatri R.M., Patel R.R.: Correlation between corrosion pits and stresses in Al alloys. Materials Letters 2008, Vol.62, pp.4497-4499.
  • 8. Medved J.J., Breton M., Irving P.E.: Corrosion pit size distribution and fatigue lives – a study of the EIFS technique for fatigue design in the presence of corrosion. International Journal of Fatigue 2004, vol.26, pp.71-80.
  • 9. Pao P.S., Gill S.J., Feng C.R.: On fatigue crack initiation from corrosion pits in 7075-T7351 aluminum alloy, Scripta Mater., 2000, Vol. 43, 391-396
  • 10. Sankaran K.K., Perez R., Jata K.V.: Effect of pitting corrosion on the fatigue behavior of aluminum alloy 7075-T6: Modeling and experimental studies, Materials Science and Engineering, 2001, Vol. A297, pp223-229 10
  • 11. Goto M., Nisitani H.: Crack initiation and propagation behavior of a heat-treated carbon steel in corrosion fatigue. Fatigue & Fracture of Engineering Materials & Structures, 1992, Vol.15, pp.353-363 11
  • 12. Kawai S., Kasai K.: Considerations of allowable stress of corrosion fatigue (focused on the influence of pitting), Fatigue & Fracture of Engineering Materials & Structures, 1985, Vol.8, pp.115-127 12
  • 13. Miller K.J., Akid R.: The application of microstructural Fracture Mechanics to various metal surface states. Proc. Royal Society A, 1996, Vol. 452, 1411-1432 13
  • 14. Nakajima M., Tokaji K.: Fatigue life distribution and growth of corrosion pits an a medium carbon steel in 3%NaCl Solution. Fatigue & Fracture of Engineering Materials & Structures, 1995, Vol.18, pp.345-351 14
  • 15. Wang Y., Akid R. Role of nonmetallic inclusions in fatigue, pitting and corrosion fatigue. Corrosion, 1996, Vol. 52, p.92-104 15
  • 16. Cornet i., Golan S.: Influence of temperature on corrosion fatigue. Corrosion, 1959, No 5, p.262 16
  • 17. Linder J., Blom R.: Development of a method for corrosion fatigue life prediction of structurally loaded bearing steel. Corrosion, 2001, Vol. 57, No.5, pp.404-412 17
  • 18. Qian Y.R., Cahoon J.R.: Crack initiation mechanisms for corrosion fatigue of austenitic stainless steel. Corrosion, 1997, Vol.53, No.2, pp.129-135 18
  • 19. Ahin S.-H. Lawrence Jr. F.V., Metzger M.M.: Corrosion fatigue of an HSLA steel. Fatigue & Fracture of Engineering Materials & Structures, 1992, Vol.15, pp.625-642 19
  • 20. Boukerrou A., Cottis R.A.: Crack initiation in the corrosion fatigue of structural steels in salt solutions. Corrosion Science, 1993, Vol.35, pp.577-585 20
  • 21. Kumakura Y., Takanashi M., Fuji A., Kitagawa M., Ojima M., Kobayashi Y.: Fatigue strength of coated steel plate in seawater. Proc. Ninth Int. Offshore and Polar Engineering Conference, Brest, France, May 30 – June 4, 1999, Vol.4, pp. 108-113. 21
  • 22. Maximovich, Kobzaruk: Initiation and propagation of low-cycle fatigue cracks in 15HN5DMF steel in seawater. Physical Chemical Mechanics of Materials,1985, Vol.20, No 5, pp.16-20 (in Russian) 22
  • 23. Shi P., Mahadevan S.: Probabilistic corrosion fatigue life prediction. 8th ASCE Specialty Conference Probabilistic Mechanics and Structural Reliability. 2000 23
  • 24. Zhang R., Mahadevan S.: Reliability based reassessment of corrosion fatigue life. Structural Safety, 2001, Vol.23, pp.77-91 24
  • 25. Akid R., Dmytrakh I.M., Gonzales-Sanchez J.: Fatigue damage accumulation: the role of corrosion on the early stages of crack development. Corrosion Engineering, Science and Technology, 2006, Vol.41, No.4, pp.328-335. 25
  • 26. Jakubowski M., Influence of pitting corrosion on fatigue and corrosion fatigue of ship structures. Part 1:Mechanisms and modeling of pitting corrosion of ship structures. Polish Maritime Research,
  • 27. Evans U.R., Tohopandui Simnad M., The mechanism of corrosion fatigue of mild steel. Proceedings of the Royal Society, Series A,1947, vol.188, pp.372-392. 27
  • 28. Melchers R.E., Development of new applied models for steel corrosion in marine applications including shipping. SAOS, 2008, Vol.3, No2, pp.135-144. 28
  • 29. Kobzaruk K.A.V., Marichev V.A.: Corrosion and corrosion fatigue resistance of steels in real marine and in laboratory. Physical Chemical Mechanics of Materials,1981, Vol.16, No 2, pp.15-21 (in Russian) 29
  • 30. Booth G.S.: Constant amplitude corrosion fatigue strength of welded joints. Fatigue in Offshore Structural Steels (Proc. of a Conference London, 24-25 Feb., 1981), Paper No 2, pp.5-16 30
  • 31. Konda N., Suzuki S., Tada N., Kho Y., Kazushige A., Watanabe E., Yamamoto M and Yaima H.: Effect of microstructure on fatigue properties of steel in seawater – developement of steels for high resistance to fatigue in ships, Part 2. J Soc. Naval Architects of Japan, 2001, Vol.191, pp.229-237. 32
  • 32. Rajasankar J., Iyer N.Y., Gopinath S., Probabilistic modeling of fatigue crack initiation from pits and pit clusters in aluminum alloys, Corrosion Engineering, Science and Technology, 2007, Vol.42, No.3, pp.260-265 33
  • 33. Jones K, Hoeppner D.W., Prior corrosion and fatigue of 2024-T3 aluminum alloy, Corrosion Science, 2006, Vol.48, pp.3109-3122 34
  • 34. Grimes D., i in.: Corrosion fatigue strength of welded K-joints and HSLA-cast steel hybrid K-nodes at component-similar scale. Steels in Marine Structures, Amsterdam 1987, pp.465-478.
  • 35. Ebara R.: Corrosion fatigue phenomena learned from failure analysis, Engineering Failure Analysis, 2006, Vol.13, pp.516-525 36
  • 36. Sonsino C.M., Lipp K., Lachman E.: Corrosion fatigue of welded high-strength cast and structural steel joints under constant and variable amplitude loading. Proc. Fifth Int. Offshore and Polar Conference, The Hague, June 11-16, 1995, pp.53-58. 37
  • 37. Jootsen M.W., Salama N.N.: Corrosion fatigue of aluminum sprayed, high strength steel immersed in seawater. Material Performance, 1984, Vol.23, No 7, pp.22-26 38
  • 38. Booth G.S.: Techniques for improving the corrosion fatigue strength for plate welded joints. Steel in Marine Structures, Amsterdam, 1987, pp.747-757 39
  • 39. Connolly B.J., Meng Q., Moran A.L., McCaw R.L., Mechanical and pre-corroded fatigue properties of coated aluminum aircraft skin system as function of various thermal spray processes, Corrosion Engineering, Science and Technology, 2004, Vol.39, No.2, pp.137-142 40
  • 40. Yuasa M, Watanabe T.: Fatigue strength of corroded weld joints. J. Society of the Naval Architects of Japan, 1994, Vol.176, pp.481-490 (in Japanese) 41
  • 41. Yuasa M, Watanabe T.: Fatigue strength of corroded weld joints. ClassNK Technical Bulletin, 1996, Vol.14, pp.51-61 (in English) 42
  • 42. Gurney T.R.: Fatigue of welded structures. (monograph) Cambridge University Press, 1968 43
  • 43. Yuasa M., Watanabe T.: The influence of corrosion wastage on the fatigue strength of fillet welded joints. NK. Tech. Bulletin, 1998, pp.21-31. 44
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-0bb0fe84-55af-4b18-ab03-99fc9360669b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.