PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 12 | 3 |
Tytuł artykułu

Concentration of selected trace elements in Xerocomus badius mushroom bodies - a health risk for humans?

Treść / Zawartość
Warianty tytułu
PL
Zawartość wybranych pierwiastków śladowych w owocnikach podgrzybka brunatnego - ryzyko dla zdrowia ludzi?
Języki publikacji
EN
Abstrakty
EN
Introduction. As regards a significant intake of wild growing edible mushrooms, especially in East and Central Europe, concentrations of toxic elements should be periodically analysed. The aim of the study was to assess changes in concentrations of selected trace elements (Ba, Cd, Co, Cu, Fe, Hg, Mn, Ni, Pb, Sr and Zn) in a mushroom species, Xerocomus badius. Material and methods.Xerocomus badius fruiting bodies were collected from five regions of Poland within the last 20 years (selected years when these mushrooms were growing). Flame atomie absorption spectrometry (FAAS) was used for determination of 10 elements while for Hg cold vapour atomie absorption spec- trometry (CVAAS) was used. Results. Generally the results show no significant differences in the accumulation efficiency of individual elements by mushrooms collected from different regions of Poland, but significant differences were observed in the accumulation efficiency of these elements by mushrooms collected in particular years of their harvest. The highest accumulation indicated by bioconcentration factors (BCFs) was observed for Cu (10.03), Hg (148.15) and Zn (4.88). Conclusion. Concentrations of Cu, Fe, Mn, Zn in the tested mushrooms were found to be lower than the values of the recommended dietary allowances (RDA), therefore the levels of these elements are not toxic for people. In our opinion, occasional consumption of these mushroom fruiting bodies within the last 20 years in Poland did not provide significant amounts of analysed trace elements (no more than other foods).
PL
Wstęp. Ze względu na istotne spożycie dziko rosnących grzybów jadalnych we wschodniej i centralnej Europie powinna być okresowo analizowana zawartość w nich pierwiastków toksycznych. Celem pracy była ocena zmian w zawartości wybranych pierwiastków śladowych (Ba, Cd, Co, Cu, Fe, Hg, Mn, Ni, Pb, Sr i Zn) w owocnikach podgrzybka brunatnego. Materiały i metody. Owocniki podgrzybka brunatnego pobierano z pięciu regionów Polski w ciągu ostatnich 20 lat (wybrane lata, w których zaobserwowano wzrost owocników na tym samym terenie). Zawartość 10 pierwiastków śladowych analizowano metodą atomowej spektrometrii absorpcyjnej z atomizacją w płomieniu (FAAS), natomiast Hg - metodą atomowej spektrometrii absorpcyjnej z generowaniem zimnych par (CVAAS). Wyniki. Wyniki wskazały na brak istotnych różnic w efektywności akumulacji poszczególnych pierwiastków pobieranych z różnych regionów Polski oraz istotne różnice w akumulacji pierwiastków przez grzyby pobierane w poszczególnych latach ich zbioru. Największą akumulację określoną wartościami współczynnika biokoncentracji stwierdzono dla Cu (10,03), Hg (148,15) oraz Zn (4,88). Wnioski. Stężenie Cu, Fe, Mn, Zn w badanych grzybach było mniejsze niż wartości dziennego zalecanego spożycia (RGA), dlatego poziomy tych metali nie są toksyczne dla ludzi. Naszym zdaniem, sporadyczne jedzenie owocników podgrzybka brunatnego w ciągu ostatnich 20 lat w Polsce nie dostarczało istotnych ilości analizowanych pierwiastków śladowych (nie więcej niż inne produkty żywnościowe).
Słowa kluczowe
Wydawca
-
Rocznik
Tom
12
Numer
3
Opis fizyczny
p.331-343,fig.,ref.
Twórcy
autor
  • Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland
autor
  • Department of Vegetable Crops, Poznan University of Life Sciences, Dabrowskiego 159, 60-594 Poznan, Poland
autor
  • Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, 60-479 Poznan, Poland
autor
  • Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland
  • Department of Vegetable Crops, Poznan University of Life Sciences, Dabrowskiego 159, 60-594 Poznan, Poland
autor
  • Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland
Bibliografia
  • Bosiacki M., 2007. The lead and cadmium content in edible parts of vegetables sold in the area of city of Poznań. Rocz. AR Pozn. 383, Ogrodnictwo 41, 427-432 [in Polish].
  • Campos J.A., Tejera N.A., Sanchez C.J., 2009. Substrate role in the accumulation of heavy metals in sporocarps of wild fungi. Biometals 22 (5), 835-841.
  • Carvalho M.L., Pimentel A.C., Femandes B., 2005. Study of heavy metals in wild edible mushrooms under different pollution conditions by X-ray fluorescence spectrometry. Anal. Sci. 21 (7), 747-750.
  • Chen X.-H., Zhou H.-B., Qiu G.-Z., 2009. Analysis of several heavy metals in wild edible mushrooms from regions of China. Buli. Environ. Contam. Toxicol. 83 (2), 280-285.
  • Cheung P.C., 2008. Mushrooms as functional foods. A John Wiley, Hoboken, New Jersey.
  • Chudzyński K., Jarzyńska G., Stefańska A., Falandysz J., 2011. Mercury content and bio-concentration potential of Slippery Jack, Suillus luteus, mushroom. Food Chem. 125 (3), 986-990.
  • Cocchi L., Vescovi L., Petrini L.E., Petrini O., 2006. Heavy metals in edible mushrooms in Italy. Food Chem. 98 (2), 277-284.
  • Dadáková E., Pelikanova T., Kalac P., 2009. Content of biogenic amines and polyamines in some species of European wild-growing edible mushrooms. Eur. Food Res. Technol. 230(1), 163-171.
  • Drewnowska M., Jarzyńska G., Kojta A.K., Falandysz J., 2012. Mercury in European Blusher, Amonita rube- scens, mushroom and soil. Bioconcentration potential and intake assessment. J. Environ. Sci. Heath B, 47 (5), 466-474.
  • Druzhinina I., Palma-O1iveira J.M., 2004. Radioactive contamination of wild mushrooms: a cross-cultural risk perception study. J. Environ. Radioactiv. 74 (1-3), 83-90.
  • Falandysz J., Bielawski L., 2001. Mercury content of wild edible mushrooms collected near the town of Augustów. Pol. J. Environ. Stud. 10 (1), 67-71.
  • Falandysz J., Bielawski L., 2007. Mercury and its bioconcentration factors in Brown Birch Scaber Stalk (Leccinum scabrum) from various sites in Poland. Food Chem. 105 (2), 635-640.
  • Falandysz J., Frankowska A., Jarzyńska G., Dryżalowska A., Kojta A.K., Zhang D., 2011. Survey on composition and bioconcentration potential of 12 metallic elements in King Bolete (Boletus edulis) mushroom that emerged at 11 spatially distant sites. J. Environ. Sci. Heal B, 463) , 231-246.
  • Falandysz J., Frankowska A., Mazur A., 2007. Mercury and its bioconcentration factors in King Bolete (Boletus edulis). Buli. Fr. J. Environ. Sci. Heal A, 42 (14), 2089-2095.
  • Falandysz J., Gucia M., 2008. Bioconcentration factors of mercury by Parasol Mushroom {Macrolepiota procera). Environ. Geochem. Health 30 (2), 121-125.
  • Falandysz J., Jędrusiak A., Lipka K., Kannan K., Kawano M., Gucia M., Brzostowski A., Dadej M., 2004. Mercury in wild mushrooms and underlying soil substrate from Koszalin, North-central Poland. Chemosphere 544) , 461-466.
  • Falandysz J., Kojta A.K., Jarzyńska G., Drewnowska M., Dryżalowska A., Wydmańska D., Kowalewska I., Wacko A., Szlosowska M., Kannan K., Szefer P., 2012. Mercury in Bay Bolete Xerocomus badius: bioconcentration by fungus and assessment of element intake by humans eating fruiting bodies. Food Addit. Contam. A, 29 (6), 951-961.
  • Falandysz J., Kunito T., Kubota R., Bielawski L., Frankowska A., Falandysz J.J., Tanabe S., 2008. Multivariate characterization of elements accumulated in King Bolete Boletus edulis mushroom at lowland and high mountain regions. J. Environ. Sci. Health Part A, 43 (14), 1692-1699.
  • Falandysz J., Szymczyk K., Ichihashi H., Bielawski L., Gucia M., Frankowska A., Yamasaki S.-I., 2001. ICP/MS and ICP/AES elemental analysis (38 elements) of edible wild mushroos growing in Poland. Food Addit. Contam. 18 (6), 503-513.
  • Gast C.H., Jansen E., Bierling J., Haanstra L., 1988. Heavy metals in mushrooms and their relationship with soil characteristics. Chemosphere 17 (4), 789-799.
  • Gençcelep H., Uzun Y., Tunctürk Y., Demirel K., 2009. Determination of mineral contents of wild-grown edible mushrooms. Food Chem. 113 (4), 1033-1036.
  • Giovani C., Garavaglia M., Scruzzi E., 2004. Radiocaesium in mushrooms from northeast Italy, 1986-2002. Radiat. Prot. Dosimetry. 111 (4), 377-383.
  • Guillamón E., Garcia-Lafuente A., Lozano M., D'Arrigo M., Rostagno M.A., Villares A., Martinez J.A., 2010. Edible mushrooms: Role in the prevention of cardiovas- cular diseases. Fitoterapia 81 (7), 715-723.
  • Gucia M., Jarzyńska G., Rafał E., Roszak M., Kojta A.K., Osiej I., Falandysz J., 2012. Multivariate analysis of minerał constituents of edible Parasol Mushroom (Macrolepiota procera) and soils beneath fruiting bodies collected from Northern Poland. Environ. Sci. Pollut. Res. 19 (2), 416-431.
  • Haloi A., Thabah C.R., Limbu D.K., Dkhar P.S., Chakraborty R., 2010. Assessment of certain essential elements in some common edibles from Dadara and Agyathuri Villages of Kamrup District of Assam. J. Hum. Ecol. 31 (2), 79-85.
  • ISO 11271:2002. Soil quality. Determination of redox potential. Field method.
  • Kalac P., 2010. Trace element contents in European species of wild growing edible mushrooms: A review for the period 2000-2009. Food Chem. 122 (1), 2-15.
  • Kalac P., Svoboda L., 2000. A review of trace element concentrations in edible mushrooms. Food Chem. 69 (3), 273-281
  • Kalac P., 2001. A review of edible mushroom radioactivity. Food Chem. 75 (1), 29-35.
  • Kojta A.K., Gucia M., Jarzyńska G., Lewandowska M., Zakrzewska A., Falandysz J., Zhang D., 2011. Phosphorous and metallic elements in Parasol Mushroom (Macrolepiota procera) and soil from the Augustowska Forest and Elk regions in north-eastem Poland. Fresen. Environ. Buli. 20 (lla), 3044-3052.
  • Kowalewska I., Bielawski L., Falandysz J., 2007. Some elements and their bioconcentration factors in red aspen bolete Leccinum rufumm from Northern Poland. Bromat. Chem. Toksyk. 40 (2), 329-335 [in Polish],
  • Mahalanobis PC., 1936. On the generalized distance in statistics. Proceedings of the National Institute of Science of India.
  • Mahdavian S.E., Somashekar R.K., 2010. Heavy metals and safety of fresh fruits in Bangalore city, India - A case study. Kathman. Univ. J. Sci. Eng. Technol. 4 (1), 17-27.
  • Malinowska E., Szefer P., Falandysz J., 2004. Metals bioaccumulation by bay bolet, Xerocomus badius, from selected sites in Poland. Food Chem. 84, 405-416.
  • Mantovani M.S., Bellini M.F., Angeli J.P.F., 01iveira R.J., Silva A.F., Ribeiro L.R., 2008. b-glucans in promoting health: prevention against mutation and cancer. Mutat. Res. 658 (3), 154-161.
  • Mattila P, Konko K., Eurola M., Pihlava J.M., Astola J., Vahteristo L., Hieraniemi V., Kumpulainen J., Valtonen M., Piironen V., 2001. Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. J. Agr. Food Chem. 49 (5), 2343-2348.
  • Melgar M.J., Alonso J., Garda M.A., 2009. Mercury in edible mushrooms and underlying soil: Bioconcentration factors and toxicological risk. Sci. Total. Environ. 407 (20), 5328-5334.
  • Morrison D.F., 1976. Multivariate statistical methods. McGraw-Hill Kogakusha Tokyo.
  • Ordinance of the Minister of Health and Social Care of 13 January 2003 on maximum levels of Chemical and biological contaminants, which may be found in food, dietary components, admissible food additives, processing promoters or surfactants (the Journal of Law of 4 March 2003 no. 37, item 326) [in Polish].
  • Pacner M., 2005. Selected heavy metals in sporocarps of mushrooms in the Giant Mountains and vicinity of Trinec (Podbeskydi). Opera Corcon. 42, 91-97.
  • PN-ISO 10390:1997. Soil quality. Determination of pH.
  • PN-ISO 11047:2001. Soil quality. Determination of cadmium, chromium, cobalt, copper, lead, manganese, nickel and zinc in aqua regia soil extracts. Flame and electrothermal atomie absorption spectrometry.
  • PN-ISO 11465:1999. Soil quality. Determination of dry matter and water content on a mass basis. Gravimetric method.
  • PN-ISO 1265+ACL1997. Soil quality. Determination of electrolytic conduction.
  • PN-ISO 14235. Soil quality. Determination of organie carbon by sulfochromic oxidation.
  • Reis A.T., Rodrigues S.M., Arujo C., Coelho J.P., Pereira E., Duarte A.C., 2009. Mercury contamination in the vinicity of chlor-alkali plant and potential risks to local population. Sci. Total. Environ. 407 (8), 2689-2700.
  • Robles-Hemandez L., Cecilia-Gonzalez-Franco A., Sota- Parra J.M., Montes-Dominguez F., 2008. Review of agricultural and medicinal applications of basidiomycete mushrooms. Tecnociencia Chihuahua 2 (2), 95-107.
  • Rudawska M., Leski T., 2005. Macro- and microelement contents in fruiting bodies of wild mushrooms from the Notecka forest in west-central Poland. Food Chem. 92 (3), 499-506.
  • Sanmee R., Dell B., Lumyong P., Izumori K., Lumyong S., 2003. Nutritive value of popular wild edible mushrooms from northem Thailand. Food Chem. 82 (4), 527-532.
  • Sharma R.K., Agrawal M., Marshall F.M., 2009. Heavy metals in vegetables collected from production and market sites of a tropical urban area of India. Food Chem. Toxicol. 47 (3), 583-591.
  • Sharma B., Chettri M.K., 2005. Monitoring of heavy metals in vegetables and soil of agricultural fields of Kathmandu Valley. Ecoprint 12, 1-9.
  • Singh S., Kumar M., 2006. Heavy metal load of soil, water and vegetables in peri-urban Delhi. Environ. Monit. Assess. 120(1-3), 79-91.
  • Shin C.K., Yee C.F., Shya L.J., Atong M., 2007. Nutritional properties of some edible wild mushrooms in Sabah. J. Appl. Polym. Sci. 7 (15), 2216-2221.
  • Smith J.E., Rowan N.J., Sullivan R., 2002. Medicinal mushrooms: a rapidly developing area of biotechnology for cancer therapy and other bioactivities. Biotechnol. Lett. 24 (22), 1839-1845.
  • Smoleń S., Sady W., Ledwożyw-Smoleń I., 2010 a. Quantitative relations between the content of selected trace elements in soil extracted with 0.03 M CH3COOH or 1 M HC1 and its total concentration in carrot storage roots. Acta Sci. Pol., Hortorum Cultus 9 (4), 3-12.
  • Smoleń S., Sady W., Ledwożyw-Smoleń I., 2010 b. Quantitative relations between the content of selected trace elements in soil extracted with 0.03 M CH3COOH or 1 M HC1 and its total concentration in lettuce and spinach. Acta Sci. Pol., Hortorum Cultus 9 (4), 13-23.
  • Svoboda L., Havlickova B., Kalac P., 2006. Contents of cadmium, mercury and lead in edible mushrooms growing in a historical silver-mining area. Food Chem. 96 (4), 580-585.
  • Tuzen M., 2003. Determination of heavy metals in soil, mushrooms and plant samples by atomie absorption spectrometry. Microchem. J. 74 (3), 289-297.
  • Yanagisawa H., Miyakoshi Y., Kobayashi K., Sakae K., Kawasaki I., Suzuki Y., Tamura J., 2009. Long-term intake of a high zinc diet causes iron deficiency anemia accompanied by reticulocytosis and extra-medullary erythropoiesis. Toxicol. Lett. 191 (1), 15-19.
  • Wasser S.R, 2011. Current findings, future trends, and unsolved problems in studies of medicinal mushrooms. Appl. Microbiol. Biot. 89 (5), 1323-1332.
  • Wasser S.P., 2002. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl. Microbiol. Biot. 60 (3), 258-274.
  • WHO. Trace elements in human nutrition and health. 1996. Geneva.
  • Zahir E., Naqvi I.I., Uddein S.M., 2009. Market basket survey of selected metals in fruits from Karachi City (Pakistan). J. Basic. Appl. Sci. 5 (2), 47-52.
  • Zhang D., Gao T., Ma P., Luo Y., Su P., 2008. Bioaccumulation of heavy metal in wild growing mushrooms from Liangshan Yi Nationality Autonomous Prefecture, China. Wuhan Univ. J. Nat. Sci. 13 (3), 267-272.
Uwagi
PL
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-0ba65489-9ec9-465b-86ca-926ffd5c3e8a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.