PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 27 | 2 |
Tytuł artykułu

Mechanical properties of some granular agricultural materials used in silo design

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this research was to provide values for different material properties considered in either traditional or more recent numerical silo design methods. Different samples of granular agricultural materials commonly stored in silos were tested. Common geotechnical devices have been used in order to make the replications easier. Based on these experiments it was determined that the different material properties were not affected by the test velocity, except in the case of Poisson ratio. From a practical point of view, the test velocity correlates well with the sliding velocity of grain during discharge. The values obtained for material properties considered in traditional silo design methods were similar to those reported by other authors. No significant differences were observed in the results obtained when using either the square shear box or the circular shear cell. The same conclusion was reached when comparing the results from direct shear tests with preconsolidated and unconsolidated samples. This means that simplified devices and procedures can be used in agricultural grains against other products. Finally, a table with the recommended values for the different parameters determined for each sample tested was provided in this work.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
27
Numer
2
Opis fizyczny
p.181-193,fig.,ref.
Twórcy
autor
  • Department of Agronomic and Forestry Environment Engineering, University of Extremadura, Universitary Center of Plasencia, Virgen del Puerto 2, 10600 Plasencia (Caceres), Spain
autor
  • Department of Agricultural Engineering, University of Leon, Av. Portugal 41, 24071 Leon, Spain
autor
  • BIPREE Research Group, Universidad Politecnica de Madrid, Complutense, s/n. 28040 Madrid, Spain
Bibliografia
  • ASTM D2850-03a, 2007. Standard test method for unconsolidated-undrained triaxial compression test on cohesive soils. Am. Soc. Testing Materials. West Conshohocken, PA, USA.
  • Ayuga F., Guaita M., and Aguado P.J., 2001. Static and dynamic silo loads using finite element models. J. Agr. Eng. Res., 78, 299-308.
  • Britton M.G. and Moysey E.B., 1986. Grain properties in the proposed new engineering practice on bin loads. ASAE Paper No. 86-4502, St. Joseph, MI, USA.
  • González-Montellano C.,Ramírez A., Gallego E., and Ayuga F., 2011. Validation and experimental calibration of 3D discrete element models for the simulation of the discharge flow in silo. Chem. Eng. Sci., 66(21), 5116-5126.
  • Härtl J. and Ooi J.Y., 2011. Numerical investigation of particle shape and particle friction on limiting bulk friction in direct shear tests and comparison with experiments. Powder Technol., 212, 231-239.
  • Lebegue Y. and Boudakian A., 1989. Bases de regles Silos du SNBATI. Essais sur les produits et principes des formules silos. Annales de L’Institut Technique du Batiment et des Travaux Publics, Théories et méthodes de calcul, 308, 69-113.
  • McNeill S.G., Thompson S.A., and Montross M.D., 2004. Effect ofmoisture content and broken kernels on the bulk density and packing of corn. Appl. Eng. Agric., 20(4), 475-480.
  • Molenda M. and Horabik J., 2004. On applicability of a direct shear test for strength estimation of cereal grain. Part. Part. Sys. Charact., 21, 310-315.
  • Molenda M., Horabik J., Ross I.J., and Montross M.D., 2002a. Friction of wheat: grain-on-grain and on corruga- ted steel. Trans. ASAE, 45(2), 415-420.
  • Molenda M., Montross M.D., Horabik J., and Ross I.J. 2002b. Mechanical properties of corn and soybean meal. Trans. ASAE, 45(6), 1929-1936.
  • Molenda M. and Stasiak M., 2002. Determination of the elastic constants of cereal grains in a uniaxial compression test. Int. Agrophysics, 16, 61-65.
  • Molenda M., Stasiak M., Moya M., Ramirez A., Horabik J., and Ayuga F., 2006. Testing mechanical properties of food powders in two laboratories – degree of consistency of results. Int. Agrophysics, 20, 37-45.
  • Molenda M., Thompson S.A., and Ross I.J., 2000. Friction of wheat on corrugated and smooth galvanized steel surfaces. J. Agric. Eng. Res., 77(2), 209-219.
  • Moya M., Ayuga F., Guaita M., and Aguado P.J., 2002. Mechanical properties of granular agricultural materials. Trans. ASAE, 45(5), 1569-1577.
  • Moya M., Guaita M., Aguado P.J., and Ayuga F., 2006. Mechanical properties of granular agricultural materials. Part 2. Trans. ASABE, 49(2), 479-489.
  • Muir W.E. and Sinha R.N., 1988. Physical properties of cereal and oilseed cultivars grown in Western Canada. Canadian Agric. Eng., 30(1), 51-55.
  • Ramirez A., Moya M., and Ayuga F., 2009. Determination of the mechanical properties of powdered agricultural products and sugar. Part. Part. Sys. Charact., 26, 220-230.
  • Rusinek R. and Molenda M., 2007. Static and kinetic friction of rapeseed. Res. Agric. Eng., 53(1), 14-19.
  • Schanz T. and Vermeer P.A., 1996. Angles of friction and dilatancy of sand. Int. J. Rock Mechanics Mining Sci. Geomech. Abstracts, 33(8), 349.
  • Shan Y., 1996. Structural loads in a model grain bin during drying of stored grain with near-ambient air. MSc. Thesis, University of Manitoba, Canada.
  • Stasiak M., Molenda M., and Horabik J., 2007. Determination of modulus of elasticity of cereals and rapeseeds using acoustic method. J. Food Eng., 82, 51-57.
  • Stasiak M., Tomas J., Molenda M., Rusinek R., and Mueller P., 2010. Uniaxial compaction behaviour and elasticity of cohesive powders. Powder Technol., 203, 482-488.
  • Thompson S.A., Bucklin R.A., Batich C.D., and Ross I.J., 1988. Variation in the apparent coefficient of friction of wheat on galvanized steel. Trans. ASAE, 31(5), 1518-1524.
  • Thompson S.A., Galili N., and Williams R.A., 1998. Floor and wall pressures in a full-scale corrugated grain bin during unloading. Trans. ASAE, 41(6), 1799-1805.
  • UNE 103402, 1998. Spanish Standard. Determination of the resistant parameters of a soil sample using a triaxial device (in Spanish). AENOR Press, Spain.
  • Wiącek J. and Molenda M., 2011. Moisture-dependent physical properties of rapeseed – experimental and DEM modeling. Int. Agrophys., 25, 59-65.
  • Zhang Q. and Britton M.G., 2003. A micromechanics model for predicting dynamic loads during discharge in bulk solids storage structures. Canadian Biosys. Eng., 45, 5.21-5.27.
Uwagi
PL
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-0b92d2b0-5b97-4b61-b2b4-3964bb77eb47
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.