PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 3 |

Tytuł artykułu

Preparing γ-cyclodextrin-immobilized starch and the study of its removal properties to dyestuff from wastewater

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A novel natural polymeric adsorbing material γ-cyclodextrin immobilized starch (CS-γCD) was prepared by introducing host functional molecule γ-cyclodextrin (γ-CD) into starch, using epichlorohydrin (ECH) as a cross-linking agent and sodium hydroxide as a catalyst, via the aqueous-phase synthesis method. The γ-cyclodextrin content in CS-γCD was up to 8.15% determined by the bromocresol green (BCG) hyperchromic spectrophotometric method. The structures of CS-γCD were characterized by infrared spectrum (FT-IR), ¹³C-nuclear magnetic resonance spectrum (¹³C-NMR), scanning electron microscope (SEM), x-ray diffraction (XRD), and gel permeation chromatography (GPC). We investigated the adsorption performances and kinetics of CS-γCD to three different kinds of dyestuff including methylene blue (MB), methyl purple (MP), and congo red (CR). The results showed the adsorbing capacities of CS-γCD to three kinds of dyes had obviously increased compared with native starch and diatomite, and the CS-γCD was also found to have a significant advantage in adsorption of macro-molecule dye such as CR over other adsorbing materials. The adsorption behaviors of CS-γCD on the three dyestuffs could be better described by a Langmuir model (R²>0.99), but also had relatively high correlation to Freundlich model. The pseudo second-order model could better describe the adsorption behaviors. The CS-γCD could be enzymolysised, while its degradation rate was much lower than native starch, which indicated that CS-γCD had a relatively higher structural stability and longer service life, these characters could be beneficial for the popularization and application of CS-γCD in fields of wastewater treatment and environment remediation.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

3

Opis fizyczny

p.1701-1717,fig.,ref.

Twórcy

autor
  • State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, China
  • School of Textiles, Tianjin Polytechnic University, Tianjin, China
autor
  • School of Textiles, Tianjin Polytechnic University, Tianjin, China
autor
  • State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, China
autor
  • School of Textiles, Tianjin Polytechnic University, Tianjin, China
autor
  • School of Textiles, Tianjin Polytechnic University, Tianjin, China

Bibliografia

  • 1. Khan H., Ahmad N., Yasar A., SHAHID R. Advanced oxidative decolorization of Red Cl-5B: effects of dye concentration, process optimization and reaction kinetics. Polish Journal of Environmental Studies, 19 (1), 83, 2010.
  • 2. Ozyonar F., Karagozoglu B. Operating cost analysis and treatment of domestic wastewater by electrocoagulation using aluminum electrodes. Polish Journal of Environmental Studies, 20 (1), 173, 2011.
  • 3. Kalkan E. Experimental Study to Remediate Acid Fuchsin Dye Using Laccase-Modified Zeolite from Aqueous Solutions. Polish Journal of Environmental Studies, 24 (1), 115, 2015.
  • 4. Mahmoodi N.M., Hayati B., Arami M., LAN C. Adsorption of textile dyes on Pine Cone, from colored wastewater: Kinetic, equilibrium and thermodynamic studies. Desalination, 268 (1), 117, 2011.
  • 5. Ge P., Li F. Kinetics and Thermodynamics of Heavy Metal Cu(II) Adsorption on Mesoporous Silicates. Polish Journal of Environmental Studies, 20 (2), 339, 2011.
  • 6. Gil A., Assis F.C.C., Albeniz S., KORILI S.A. Removal of dyes from wastewaters by adsorption on pillared clays. Chemical Engineering Journal, 168 (3), 1032, 2011.
  • 7. Matsuoka Y, Yamaoka K. Film Dichroism. II. Linearly-polarized Absorption Spectra of Acridine Dyes in the Stretched Poly (vinyl alcohol) Films[J]. Bulletin of the Chemical Society of Japan, 52 (11), 3163, 2006.
  • 8. Can H.K., Kirci B., Kavlak S., GUNER A. Removal of some textile dyes from aqueous solutions by poly(N-vinyl-2-pyrrolidone) and poly(N-vinyl-2-pyrrolidone)/K₂S₂O₈ hydrogels[J]. Radiation Physics & Chemistry, 68 (5), 811, 2003.
  • 9. Yavuz E., Bayramoğlu G., Arica M.Y., SENKAL B.F. Preparation of poly (acrylic acid) containing core-shell type resin for removal of basic dyes[J]. Journal of Chemical Technology & Biotechnology, 86 (5), 699, 2011.
  • 10. Travlou N.A., Kyzas G.Z., Lazaridis N.K., DELIYANNI E.A. Graphite oxide/chitosan composite for reactive dye removal. Chemical Engineering Journal, 217 (1), 256, 2013.
  • 11. Juang R., Tseng R., Wu F., LEE S.H. Adsorption behavior of reactive dyes from aqueous solutions on chitosan. Journal of Chemical Technology & Biotechnology Biotechnology, 70 (4), 391, 2010.
  • 12. Ngah W.S.W, Teong L.C., Hanafiah M.A.K.M. Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate Polymers, 83 (4), 1446, 2011.
  • 13. Janaki V., Vijayaraghavan K., Oh B.T., LEE K.J., MUTHUCHELIAN K., RAMASAMY A.K., SERALATHAN K.K. Starch/polyaniline nanocomposite for enhanced removal of reactive dyes from synthetic effluent. Carbohydrate Polymers, 90 (4), 1437, 2012.
  • 14. Santos E.H., Kamimura J.A., Hill L.E., GOMES C.L. Characterization of carvacrol beta-cyclodextrin inclusion complexes as delivery systems for antibacterial and antioxidant applications[J]. LWT - Food Science and Technology, 60 (1), 583, 2015.
  • 15. Dong C., Ye Y., Qian L., ZHAO G. Antibacterial modification of cellulose fibers by grafting β-cyclodextrin and inclusion with ciprofloxacin[J]. Cellulose, 21 (3), 1921, 2014.
  • 16. Liu B., Li H., Xu X., LV N, SINGH V., STODDART J. F., YORK P, XU X., GREF R., ZHANG J.W. Optimized synthesis and crystalline stability of γ-cyclodextrin metal-organic frameworks for drug adsorption. International Journal of Pharmaceutics, 514 (1), 212, 2016.
  • 17. Inoue Y., Suzuki K., Ezawa T., MURATA I., YOKOTA M., TOKUDOME Y., KANAMOTO I. Examination of the physicochemical properties of caffeic acid complexed with γ-cyclodextrin. Journal of Inclusion Phenomena & Macrocyclic Chemistry, 83 (3-4), 289, 2015.
  • 18. Wang X., Zhou Z., Jing G. Synthesis of Fe₃O₄ poly(styrene-glycidyl methacrylate) magnetic porous microspheres and application in the immobilization of Klebsiella sp. FD-3 to reduce Fe(III)EDTA in a NO(x) scrubbing solution[J]. Bioresour Technol, 130 (2), 750, 2013.
  • 19. Zhou L.C., Jian-Mei L.I. Kinetics and Thermodynamics of Adsorption of Chlorophenols onto β-Cyclodextrin Modified Chitosan[J]. Acta Physico-Chimica Sinica, 28 (7), 1615, 2012 (8).
  • 20. Wang G., Zhou Y., Chai X., ZHENG C. L., ZHAO H.X., ZHOU X.B. Adsorption behavior of azo dye acid red r in aqueous solution onto β-cyclodextrin-grafted chitosan[J]. Fresenius Environmental Bulletin, 19 (5), 811, 2010.
  • 21. Dedai L.u., Liqiang Yang, Tianhong Zhou, LEI Z.P. Synthesis, characterization and properties of biodegradable polylactic acid-β-cyclodextrin cross-linked copolymer microgels. European Polymer Journal, 44 (7), 2140, 2008.
  • 22. And R.A., Rinaudo M. New Supramolecular Assemblies of a Cyclodextrin-Grafted Chitosan through Specific Complexation. Macromolecules, 35 (21), 7955, 2008.
  • 23. Jiaxi H., Kaijun X., Zhongjie D., ZOH W., ZHANG C. β-Cyclodextrin functionalized polystyrene porous monoliths for separating phenol from wastewater. Carbohydrate Polymers, 120 (20), 85, 2015.
  • 24. López-De-Dicastillo C., Gallur M., Catalá R., GAVARA R., HERNANDEZ M.P. Immobilization of β-cyclodextrin in ethylene-vinyl alcohol copolymer for active food packaging applications. Journal of Membrane Science, 353 (1), 184, 2010.
  • 25. Liu H., Zheng-Biao G.U., Hong Y., LI Z.F. Hyperchromic Spectrophotometric Determination of γ-Cyclodextrin with Bromocresol Green. Journal of Food Science & Biotechnology, 28 (4), 451, 2009.
  • 26. Xiang-Jun Q.I., Gou J.X., Han X.J., YAN B. Study on Measuring Reducing Sugar by DNS Reagent. Journal of Cellulose Science & Technology, 12 (3), 17, 2004.
  • 27. Demiate I.M., Dupuy N., Huvenne J.P., CEREDA M.P., WOSIACKI G. Relationship between baking behavior of modified cassava starches and starch chemical structure determined by FTIR spectroscopy. Carbohydrate Polymers, 42 (2), 149, 2000.
  • 28. Delval F., Crini G., Bertini S., TORRI G. Preparation, characterization and sorption properties of crosslinked starch-based exchangers. Carbohydrate Polymers, 60 (1), 67, 2005.
  • 29. Jyothi A.N., Moorthy S.N., Rajasekharan K.N. Effect of Cross-linking with Epichlorohydrin on the Properties of Cassava (Manihot esculenta Crantz) Starch. Starch/Stärke, 58 (6), 292, 2010.
  • 30. Lian X., Wang C., Zhang K., LI L. The retrogradation properties of glutinous rice and buckwheat starches as observed with FT-IR, ¹³C NMR and DSC. International Journal of Biological Macromolecules, 64 (3), 288, 2014.
  • 31. Thérienaubin H., Janvier F., Baille W.E., ZHOU X.X., MARCHESSAULT RH. Study of hydration of cross-linked high amylose starch by solid state ¹³C NMR spectroscopy. Carbohydrate Research, 342 (11), 1525, 2007.
  • 32. Zhang H., Liu B., Qiu Y., FAN J.F., YU S.J. Microwave-assisted synthesis and characterization of acetylated corn starch. Starch/Stärke, 66 (5-6), 515, 2013.
  • 33. Mandal B., Ray S.K. Synthesis, characterization, swelling and dye adsorption properties of starch incorporated acrylic gels. International Journal of Biological Macromolecules, 81 (11), 847, 2015.
  • 34. Qiaoyu L., Diao S., Xiong S., ZHANG S.H. GPC Analysis of Rice Starches and Their Components from Different Rice Species. Food Science, 24 (3), 105, 2003.
  • 35. Yu W., Tan X., Zou W., HU Z.X., FOX G.P., GIDLEY M.J., GILBERT R.G. Relationships between protein content, starch molecular structure and grain size in barley. Carbohydrate Polymers, 155 (8), 271, 2017.
  • 36. Xu S., Wang J., Wu R., WANG J.D., LI H. Adsorption behaviors of acid and basic dyes on crosslinked amphoteric starch. Chemical Engineering Journal, 117 (2), 161, 2006.
  • 37. Erdem E., Cölgeçen G., Donat R. The removal of textile dyes by diatomite earth. Journal of Colloid & Interface Science, 282 (2), 314, 2005.
  • 38. Alpat S.K., Özge Özbayrak, Şenol Alpat, AKCAY H. The adsorption kinetics and removal of cationic dye, Toluidine Blue O, from aqueous solution with Turkish zeolite. Journal of Hazardous Materials, 151 (1), 213, 2008.
  • 39. Shen H.M., Zhu G.Y., Yu W.B., WU H.K. Surface immobilization of β-cyclodextrin on hybrid silica and its fast-adsorption performance to p-nitrophenol from aqueous phase. Rsc Advances, 5(103), 84410, 2015.
  • 40. Kyzas G.Z., Lazaridis N.K., Bikiaris D.N. Optimization of chitosan and β-cyclodextrin molecularly imprinted polymer synthesis for dye adsorption. Carbohydrate Polymers, 91 (1), 198, 2013.
  • 41. Punrattanasin P., Sariem P. Adsorption of Copper, Zinc, and Nickel using Loess as Adsorbent by Column Studies. Polish Journal of Environmental Studies, 24 (3), 1259, 2015.
  • 42. Wang T., Zhang W., Lu X. Preparation and Cu (II) Adsorption Characteristics of Carboxymethyl Cross-Linked Sewage Sludge. Polish Journal of Environmental Studies, 25 (2), 805, 2016.
  • 43. Armagan B., Toprak F. Optimum Isotherm Parameters for Reactive Azo Dye onto Pistachio Nut Shells: Comparison of Linear and Non-Linear Methods. Polish Journal of Environmental Studies, 22 (4), 1007, 2013.
  • 44. Crini G. Kinetic, equilibrium studies on the removal of cationic dyes from aqueous solution by adsorption onto a cyclodextrin polymer. Dye Pigment. Dyes & Pigments, 77 (2), 415, 2008.
  • 45. Zhang Y., Zhang H., Yang W. Rabbit Protein Adsorption Properties of Copper (II) Ion-Polluted Soil[J]. Polish Journal of Environmental Studies, 24 (5), 2015.
  • 46. Zhang Y., Zhang H., Liu Y., Ding C.K. Chelating Ability and Microbial Stability of an l -Arginine-Modified Chitosan-Based Environmental Remediation Material[J]. Journal of Polymers & the Environment, 26 (3), 885, 2018.
  • 47. Kim M., Lee S.J. Characteristics of crosslinked potato starch and starch-filled linear low-density polyethylene films. Carbohydrate Polymers, 50 (4), 331, 2002.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-0b541f9d-6a1d-4220-9620-a65e36d7aca7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.