PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 40 | 02 |
Tytuł artykułu

How the surface properties affect the nanocytotoxicity of silver? Study of the influence of three types of nanosilver on two wheat varieties

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The influence of silver nanoparticles on calli cells of stress tolerant—Parabola and stress sensitive—Raweta wheat genotypes (Triticum aestivum L.) was studied. Three types of silver nanoparticles (AgNPs) were tested: cystamine-stabilized (positively charged), unmodified, synthesized using sodium borohydride and citrate-stabilized AgNPs, both negatively charged. Physico-chemical properties of silver nanoparticles were investigated by: UV–Vis spectroscopy, dynamic light scattering used for electrophoretic mobility and hydrodynamic diameter determination and transmission electron microscopy. The evaluation of cytotoxicity was estimated basing on lipid peroxidation, proline content and antioxidant enzymes activity. For sensitive variety every type of nanoparticles induced stress (proline increase) in cells, but positively charged nanoparticles were most cytotoxic. Treatment of stress tolerant Parabola by AgNPs caused the increase in SOD activity, suggesting the occurrence of oxidative stress in cells, confirmed by the increase of membrane lipid peroxidation. Negatively charged AgNPs were significantly more cytotoxic to the calli cells of sensitive variety in comparison to tolerant one.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
40
Numer
02
Opis fizyczny
Article 31 [7p.], fig.,ref.
Twórcy
autor
  • Institute of Biology, Pedagogical University, Podchorazych 2, 30‑084 Krakow, Poland
autor
  • Institute of Biology, Pedagogical University, Podchorazych 2, 30‑084 Krakow, Poland
autor
  • Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30‑239 Krakow, Poland
Bibliografia
  • Barbasz A, Oćwieja M, Barbasz J (2015) Cytotoxic activity of highly purified silver nanoparticles sol against cells of human immune system. Appl Biochem Biotechnol 176(3):817–834
  • Barbasz A, Kreczmer B, Oćwieja M (2016) Effects of exposure of callus cells of two wheat varieties to silver nanoparticles and silver salt (AgNO₃). Acta Physiol Plant 38(3):1–11
  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3(1):1–30
  • Filek M, Zembala M, Hartikainen H, Miszalski Z, Kornaś A, Wietecka-Posłuszny R, Walas P (2009) Changes in wheat plastid membrane properties induced by cadmium and selenium in presence/absence of 2,4-dichlorophenoxyacetic acid. Plant Cell Tissue Organ Cult 96(1):19–28
  • Gorczyca A, Pociecha E, Kasprowicz M, Niemiec M (2015) Effect of nanosilver in wheat seedlings and Fusarium culmorum culture systems. Eur J Plant Pathol 142(2):251–261
  • Jiang HS, Li M, Chang FY, Li W, Yin LY (2012) Physiological analysis of silver nanoparticles and AgNO₃ toxicity to Spirodela polyrhiza. Environ Toxicol Chem 31(8):1880–1886
  • Jiang HS, Qiu XN, Li GB, Li W, Yin LY (2014) Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza. Environ Toxicol Chem 33(6):1398–1405
  • Kittler S, Greulich C, Diendorf J, Koller M, Epple M (2010) Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 22(16):4548–4554
  • Kujda M, Oćwieja M, Adamczyk Z, Bocheńska O, Braś G, Kozik A, Barbasz J (2015) Charge stabilized silver nanoparticles applied as antibacterial agents. J Nanosci Nanotechnol 15(5):3574–3583
  • Marambio-Jones C, Hoek EM (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12(5):1531–1551
  • Oćwieja M, Adamczyk Z, Morga M, Michna A (2011) High density silver nanoparticle monolayers produced by colloid self-assembly on polyelectrolyte supporting layers. J Colloid Interface Sci 364:39–48
  • Oukarroum A, Barhoumi L, Pirastru L, Dewez D (2013) Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba. Environ Toxicol Chem 32(4):902–907
  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720
  • Silva T, Pokhrel LR, Dubey B, Tolaymat TM, Maier KJ, Liu X (2014) Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: comparison between general linear model-predicted and observed toxicity. Sci Total Environ 468:968–976
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-0b0edfcb-e96b-4a68-9b20-673ed34d95da
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.