EN
The objective of the present study was to determine the influence of potassium deprivation on the halophyte species Hordeum maritimum grown in hydroponics for 2 weeks. Treatments were with potassium (+K) or without potassium (-K). Growth, water status, mineral nutrition, parameters of oxidative stress [malondialdehyde (MDA), carbonyl groups (C=O), and hydrogen peroxide concentration (H₂O₂) contents], antioxidant enzyme activities [superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), guaiacol peroxidase (GPX, EC 1.11.1.7), ascorbate peroxidase (APX, EC 1.11.1.11), monodehydroascorbate peroxidase (MDHAR, EC 1.6.5.4), dehydroascorbate peroxidase (DHAR, EC 1.8.5.1), and glutathione reductase (GR, EC 1.6.4.2)], and antioxidant molecules [ascorbate (ASC), and glutathione (GSH)] were determined. Results showed that the growth of vegetative organs decreased owing to potassium deficiency with roots (-36%) more affected than shoots (-12%). Water status was only diminished in roots (reduction of 24%). Potassium deprivation decreased potassium concentration in both organs, this decrease was more pronounced in roots (-81%) than in shoots (-55%). In contrast to carbonyl groups, MDA content increased owing to potassium deprivation. Except for CAT activity that remained unaffected; SOD, GPX, APX, GR, MDHAR, and DHAR activities were significantly increased. H₂O₂ concentration was negatively correlated with the activities of enzymes and the accumulation of non-enzymatic antioxidants implicated in its detoxification. In conclusion, a cooperative process between the antioxidant systems is important for the tolerance of H. maritimum to potassium deficiency.