Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 23 | 6 |
Tytuł artykułu

Heavy metals uptake by select plant species in the landfill area of Štěpánovice, Czech Republic

Treść / Zawartość
Warianty tytułu
Języki publikacji
Vegetation can be used as bioindicators of site pollution by identifying the mobilization of heavy metals. This study was conducted to screen plants growing in a landfill site to determine their potential for metal accumulation. Plants selected were the Tanacetum vulgare and Lycopersicon esculentum. Based on results, it may be concluded that Tanacetum vulgare can tolerate and sequester Cd from the soil. None of the plants were identified as metal hyper accumulators. However, Tanacetum vulgare was most effective in taking up metals and showed a higher enrichment coefficient of heavy metals, indicating its higher accumulation ability.
Słowa kluczowe
Opis fizyczny
  • Department of Applied and Landscape Ecology, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic
  • Department of Applied and Landscape Ecology, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic
  • 1. YANQUN Z., YUAN L., SCHVARTZ CH., LANGLADE L., FAN L. Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead-zinc mine area. China Environ Int. 30, (4), 567, 2004.
  • 2. GISBERT G., ROS R., HARO A.D., WALKER D.J., BERNAL M.P., SERRANO R. NAVARRO-AVIÑÓ J. A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem. Bioph. Res. Co. 303, (2), 440, 2003.
  • 3. ADESODUN J.K., ATAYESE M.O., AGBAJE T.A., OSA- DIAYE B.A., MAFE O.F., SORETIRE A.A. Phytoremediation Potentials of Sunflowers (Tithonia diver- sifolia and Helianthus annuus) for Metals in Soils Contaminated with Zinc and Lead Nitrates. Water Air Soil Poll. 207, (1-4), 195, 2010.
  • 4. LASAT M. M. Phytoextraction of metals from contaminat­ed soil: A review of plant/soil/metal interaction and assess­ment of pertinent agronomic issues. J. Hazard. Mater. 3, (1-25), 2002.
  • 5. MAZZEO R., NANNONI F., PROTANO G., MANTI A., SANTOLINI R. Integrated approach for the analysis of ecosystems at risk: a case study in a waste landfill. Environ Eng Manag J. 12, (S1), 165, 2013.
  • 6. ÁLVAREZ E., FERNÁNDEZ MARCOS M.L., VAA- MONDE C., FERNÁNDEZ-SANJURJO M.J. Heavy met­als in the dump of an abandoned mine in Galicia (NW Spain) and in the spontaneously occurring vegetation. Sci. Total Environ. 313, (1-3), 185, 2003.
  • 7. KOWALSKA J., STRYJEWSKA E, BYSTRZEJEWSKA- PIOTROWSKA G., LEWANDOWSKI K., TOBIASZ M., PAŁDYNA J., GOLIMOWSKI J. Studies of Plants Useful in the Re-Cultivation of Heavy Metals-Contaminated Wasteland - a New Hyperaccumulator of Barium? Pol. J. Environ. Stud. 21, (2), 401, 2012.
  • 8. VAVERKOVA M. D. ADAMCOVA D. Can vegetation indicate municipal solid waste landfill impact on the envi­ronment? Pol. J. Environ. Stud. 23, (2), 501, 2014.
  • 9. ADAMCOVA D., VAVERKOVA M. D. Degradation of biodegradable/degradable plastics in municipal solid waste landfill. Pol. J. Environ. Stud. 23, (4), 1071, 2014.
  • 10. VAVERKOVA M. D. ADAMCOVA D. Evaluation of land­fill pollution with special emphasis on heavy metals. J. Ecol. Enginer. 2, (15), 1-, 2014.
  • 11. CHAO W., XIAO-CHEN L., LI-MIN Z., PEI-FANG W., ZHI-YONG G. Pb, Cu, Zn and Ni Concentrations in Vegetables in Relation to Their Extractable Fractions in Soils in Suburban Areas of Nanjing, China. Pol. J. Environ. Stud. 16, (2), 199, 2007.
  • 12. KACHENKO A.G., SINGH B. Heavy Metals Contamination in Vegetables Grown in Urban and Metal Smelter Contaminated Sites in Australia. Water Air Soil Poll. 169, 101, 2006.
  • 13. MALAYERI B.E., CHEHREGANI A., YOUSEFI N., LORESTANI B. Identification of the hyper accumulator plants in copper and iron mine in Iran. Pakistan J Biol Sci. 11, (3), 490, 2008.
  • 14. KURTEVA M.K. Comparative study on Plantago major and P. lanceolata (Plantaginaceae) as bioindicators of the pollution in the region of the Asarel Copper Dressing Works. Phytologia Balcanica 15, (2), 261, 2009.
  • 15. PORĘBSKA G., OSTROWSKA A. Heavy Metal Accumulation in Wild Plants: Implications for Phytoremediation. Pol. J. Environ. Stud. 8, (6), 433, 1999.
  • 16. RASKIN I., SMITH R.D., SALT D.E. Phytoremediation of metals: using plants to remove pollutants from the environ­ment. Curr. Opin. Biotech. 8, (2), 221, 1997.
  • 17. EBBS S.D., KOCHIAN L.V. Phytoextraction of zinc by oat (Avena sativa), barley (Hordeum vulgare), and Indian Mustard (Brassica juncea). Environ. Sci. Technol. 32, (6), 802, 1998.
  • 18. BROWN S.L., CHANEY R.L., ANGLE J.S., BAKER A.J.M. Phytoremediation potential of Thlaspi caerulescens and Bladder Campion for zinc- and cadmium-contaminated soil. J. Environ. Qual. 23, 1151, 1994.
  • 19. BROWN S.L., CHANEY R.L., ANGLE J.S., BAKER A.J.M. Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Sci. Soc. Am. J. 59, 125, 1995.
  • 20. TOLRA R.P., POSCHENRIEDER CH., BARCELO J. Zinc hyperaccumulation in Thlaspi caerulescens. I. Influence on growth and mineral nutrition. J. Plant Nutr. 19, (12), 1531, 1996.
  • 21. JASION M., SAMECKA-CYMERMAN A., KOLON K., KEMPERS A.J. Tanacetum vulgare as a Bioindicator of Trace-Metal Contamination: A Study of a Naturally Colonized Open-Pit Lignite Mine. Arch. Environ. Con. Tox. 65, 442, 2013.
  • 22. GUBKA D., WOLSKI K. Use of Turfgrasses in Landfill Leachate Treatment. Pol. J. Environ. Stud. 20, (5), 1161, 2011.
  • 23. ŚLIWKA M., BARAN A., WIECZOREK J. Evaluation of Toxic Metal Bioaccumulation in a Reservoir of Flotation Tailings. Pol. J. Environ. Stud. 22, (3), 909, 2013.
  • 24. CSN EN ISO 11885 Water quality - Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.