PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1996 | 440 |

Tytuł artykułu

Rola mikroorganizmów w przemianach azotu w glebie

Autorzy

Treść / Zawartość

Warianty tytułu

EN
Role of microorganisms in nitrogen transformation in soil

Języki publikacji

PL

Abstrakty

PL
Pomimo tego, że otaczająca nas atmosfera zawiera około 78% N₂ produkcja żywności na ziemi jest ograniczona z powodu większego niedoboru azotu niż innych składników pokarmowych dla roślin. Azot dostaje się do ekosystemu lądowego i wodnego poprzez wiązanie N₂ gazowego i opady atmosferyczne. Zdolność do wiązania wolnego azotu jest szeroko rozpowszechniona wśród bakterii. Zwykle bakterie wiążące N₂ dzieli się na dwie grupy: wolno żyjące i symbiotyczne. Proces wiązania azotu jest pierwszym stopniem w cyklu krążenia azotu, w którym gazowy azot jest przekształcany do formy amonowej i następnie do aminokwasów, które służą do biosyntezy kompleksów organicznego azotu; przykładem tego są proteiny. Proteiny następnie są degradowane przez bakterie do związków prostszych, takich jak peptydy i aminokwasy, z których jest uwalniany azot nieorganiczny - amoniak, azotyny i azotany. Azotany następnie przekształcane są w N₂ gazowy i w tej formie powraca do atmosfery w procesie denitryfikacji. W ten sposób zamyka się cykl krążenia azotu. Mikroorganizmy odgrywają kluczową rolę w kilkunastu etapach cyklu azotowego.
EN
Althought enveloped in an atmosphere of 78% N₂, production of food on earth is limited more by availability of N then any other element. Atmospheric N inputs to terrrestrial and aquatic ecosystems throught gaseous N₂ fixation and atmospheric fallout. The ability to fixing N₂ fairly widespread among the bacteria. The N₂-fixing bacteria is commonly divided into two groups: free-living or symbiotic N₂ fixation. This proces is the first step in the nitrogen cycle in which atmospheric gaseous nitrogen is converted to ammonia and then to amino acids, which are used for the biosynthesis of complex nitrogen - containing organic compounds such as protein. The proteins are then degradate by bacteria to simple organic compounds, namely, peptides and amino acids, which are in turn converted to inorganic nitrogen compounds such as ammonia, nitrites and nitrates. The nitrates return to gaseous N to atmosphere via denitrification process, thus completing the cycle. Microoganisms play a key role in several steps of the nitogen cycle.

Wydawca

-

Rocznik

Tom

440

Opis fizyczny

s.151-173,rys.,tab.,bibliogr.

Twórcy

autor
  • Zakład Mikrobiologii Rolniczej, Instytut Uprawy, Nawożenia i Gleboznawstwa, ul.Czartoryskich 8, 24-100 Puławy

Bibliografia

  • 1. ADAMS Т.Н., MC CLUNG G.R., CHEŁM B.K. (1984). Physical organisation of the Bradyrhizobium japonicum nitrogenase gene region. J.Bacteriol. 159, 857-862.
  • 2. ALLISON F.E. (1955). The enigma of soil nitrogen balance sheets, pp 213-250, In: Norman A.G (ed) Advanced Agronomy, vol.3, Academic Press, N.Y.
  • 3. AULAKH M.S. (1986). Gaseous losses of nitrogen from soil through biological processes: a review, pp 99-115, In: Mishra M.M., Kappor K.K. (eds). Soil Biology, Hayrana Agric.Univ. Hissar. India.
  • 4. AULAKH M.S. (1989). Transformation of ammonium nitrogen in upland and flooded soils ammended with crop residues. J.Indian Soc.Soil Sci. 37: 248-255.
  • 5. AULAKH M.S., DORAN J.W., WALTERS D.T., MOSIER A.R., FRANCIS D.D. (1991). Crop residues type and placement effects of denitrification and mineralization. Soil Sci.Soc.Am.J. 55: 1020-1025.
  • 6. AULAKH M.S., DORAN J.W., MOSIER A.R. (1992). Soil denitrification: Significance, Measure­ment and Effects of Management. Adva. Soil Sci. 18: 156.
  • 7. AYANABA A., ALEXANDER M. (1973). Microbial formation of nitrosamines in vitro. Applied Microbiology 25: 862-868.
  • 8. BAKER D.D., SCHWINTZER G.W. (1990). Introduction. In: The Biology of Frankia and Actinorhizal Plants. C.R. Schwintzer and J.D. Tjepkema (eds), Academic Press, New York, pp 3-13.
  • 9. BAUER W.D. (1981). Infection of legumes by Rhizobia. Ann. Rev. Plant Physiol. 32: 407-449.
  • 10. BECKING J.H. (1963). Fixation of molecular nitrogen by an aerobic Vibrio or Spirillum. Antonie van Leeuvenhoeck. J. Microbiol. Serol. 29: 326.
  • 11. BLACKMER A.M., BREMMNER J.M. (1978). Inhibitory effect of nitrate and reduction of N20 to N2 by soil microorganisms. Soil Biol. Biochem. 10: 187-191.
  • 12. BOND G. (1983). Taxonomy and distribution of non-legume nitrogen-fixation systems. In: Biological Nitrogen Fixation in Forest Ecosystems. Fundations and Applications. J.C. Gordon and C. Wheeler (eds), Martinus Nijhoff/Dr. W.Junk. Publ., The Hague , pp 55-87.
  • 13. BUNDY L.G., BREMNER J.M. (1973). Inhibition of nitrification in soils. Proc. Soil Sci. Soc. Am. 37: 396-398.
  • 14. BUYANOVSKY G.A., WAGNER G.H. (1987). Carbon transfer in a winter wheat (Triticum aestivum L.) ecosystem. Biol. Fertil. Soils 5: 76-82.
  • 15. CHATERPAUL L., PAUL E.A., CALACO W. (1980). Denitrification in Saskatchewan soils under field condition. Abstract of the 80th Annual Meeting. American Society of Microbiology. Miami Beach, Florida, May 11-16, 1980.
  • 16. CHRISTENSEN-WENIGER C., VAN VEEN J.A., (1991). NH₄ - excreting Azospirillium brasilense mutants enhance the nitrogen supply of the wheat host. Appl. Environ. Microbiol. 57: 3006-3012.
  • 17. CHRISTENSEN-WENIGER C. (1992). N₂ - fixation by ammonium excreting Azospirillium brasilense in auxine induced root tumors of wheat (Triticum aestivum L.). Biol. Fertil. Soils 13: 165-172.
  • 18. CRUTZEN P.J. (1981). Atmospheric chemical processes of the oxides of nitrogen including nitrous oxide, pp. 17-44. In: Delwiche C.C. (ed), Denitrification, Nitrogen-fixation and Atmospheric Nitrous Oxide, Wiley, New York.
  • 19. DELWICHE C.C., BRYAN B.A. (1976). Denitrification. Ann. Rev. Microbiol. 30: 241-262.
  • 20. DIEM H.G., DOMMERGUES Y.R. (1990). Current and potential use and management of Causurinaceae in the tropics and subtropics. In: The Biology of Frankia and Actinorhizal Plants. G.R. Schwintzer and J.D. Tjepkema (eds), Academic Press, New York ,pp 317-342.
  • 21. DOMMERGUES Y.R., MANAGENOT F. (1970). Ecologie Microbienne du Sol. Ed. Masson, Paris, pp 153-232.
  • 22. DORAN J.W., MIELKE L.N., POWER J. (1990). Microbial activity as regulated by soil water filled space. Trans. 14th Int. Congress Soil Sci. 3: 94-99.
  • 23. DREYFUS B.L., DIEM H.G., FREIERE J., KEYA S.O., DOMMERGUES Y.R. 1987. Nitrogen fixation in tropical agriculture and forestry. In: Microbiol. Technology in the Dwellosing World, E.J. Da Silva, Y.R. Dommergues, Nyns F.J., Relledge C.(eds), Oxford University Press, London , pp 7-50.
  • 24. EVANS H.J. (1977). Biological nitrogen fixation for food and fiber production. Science 197: 332-339.
  • 25. FAO (1986). Production Yearbook 1985. Food and Agriculture Organization, Rome, Italy.
  • 26. FIRESTONE M.K. (1982). Biological Denitrification, pp 289-326, In: Stevenson F.J. (ed), Nitrogen in Agricultural Soils. Agronomy monograph No 22, Amer. Soc. Agron., Madison, Wise.
  • 27. GŁOWACKA M. (1992). Enhanced efficiency of symbiotic fixation by a derivative of Rhizobium meliloti. Zentralblatt Microbiol. 147: 192-196.
  • 28. GORDON J.C., WHEELER C.T. (1983). Biological nitrogen fixation in forest. Fundations and Application. Martinus Nijhoff/Dr W. Junk Publ. ,The Hague, pp 55.
  • 29. GORING G.A.J., LASKOWSKI D.A. (1982). The effects of pesticides on nitrogen transformation in soil, pp 689-720., In: Stevenson F.J. (ed), Nitrogen in Agricultural Soils, Agronomy monograph No 22, Amer. Soc. Agron., Madison, Wise.
  • 30. HASEN S., JANSEN H.E., SCHAFFER M.J. (1995). Developments in modelling nitrogen transformation in soil. In: Nitrogen Fertilization in the Environment. P.E. Bacon (ed) Marcel Dekker Inc., New York, Basel, Hong Kong, pp 89-107.
  • 31. HAUCK R.D., TANJI K.K. (1982). Nitrogen transfers and mass balance, pp 891-925, In: Stevenson F.J. (ed), Nitrogen in Agricultural Soils, Agronomy monograph No 22, Amer. Soc. Agron., Madison, Wise.
  • 32. HAUCK R.D. (1988). A human ecosphere perspective of agriculture nitrogen cycling, pp 3-19., In: Willson J.R. (ed), Advances in Nitrogen Cycling in Agricultural Ecosystems. C.A.B. International, Oxford, U.K.
  • 33. HAYNES R.J., GOH K.M. (1978). Ammonium and nitrate nutrition of plants. Biol. Rev. 53: 465-510.
  • 34. HENNINGER N.C., BOLLAG J.M. (1976). Effects of chemicals uses as nitrification process. Can. J. Microbiol. 22: 668-672.
  • 35. HILL D.J. (1975). The pattern development Anabaena and the Azolla-Anabaena symbiosis. Planta 122: 179-184.
  • 36. HUSS-DANELL K. (1977). Nitrogen-fixation by Stereocaulon paschale under field conditions. Can. J. Bot. 55: 585-592.
  • 37. KNOWLES R. (1981). Denitrification., pp 323-369, In: Paul E.A., Ladd J. (eds), Soil Biochemistry, vol.5, Marcel Dekker Inc., New York.
  • 38. KOBUS J., STRZELEC A., CZABAN J. (1977). Influence of soil properties on disappearance of atrazine and linuron. The interaction of soil microflora and environmental pollutions. Puławy, vol. 1: 21-226.
  • 39. KONDO M., KOBAYASHI M„ TOKAHASKI E. (1989). Effects of phosphorus and temperature on the growth and nitrogenase activity in the Azolla-Anabeana association , Soil Sci. Plant Nutrition 35: 211-22.
  • 40. KRÓL M., KOBUS J. (1995). Nitrogen fixation in para-nodules of barley and maize roots by induced free-living diazotrophs. Nitrogen Fixation. Fundamentals and Applications., Kluwer Academic Publishers, The Netherlands, pp 516.
  • 41. LAWSON K.A., BARNET Y., MC GILCHRIST C.A. (1987). Environmental factors influencing numbers of Rhizobium leguminosarum bv. trifolii and its bacteriophages in two field soils. Appl. Environ. Microbiol. 53: 1125-1131.
  • 42. LEWIS O. (1986). Plants and Nitrogen., E. Arnold Publishers, London, pp 104.
  • 43. LIU G., DENG T. (1987). A study of nodulation and nitrogen fixation of Alder on the purplish soils of China. Plant Soil 99: 285-290.
  • 44. LORKIEWICZ Z. (1988). Biologiczne wiązanie azotu. Problemy Biotechnologii, pp 241-268.
  • 45. LUMPKIN T.A., PLUCKNETT D.L. (1982). Azolla as a green manure., Use and Management in Crop Production. ,Westviev Press, Boulder, Colorado.
  • 46. MC CARDEL A., SADOWSKY M.J., GREGAN P.B. (1992). Genetics and inprovement of biological nitrogen fixation. In: Soils Microbial Ecology, Ed. F. Blaine Metting Jr., New York, Basel, Hong Kong , pp 151-175.
  • 47. MARSZEWSKA-ZIEMIĘCKA J., MALISZEWSKA W., MYŚKÓW W., STRZELCZYK E. (1969). Mikrobiologia Gleby i Nawozów Organicznych, Wyd. 2, PINGW.
  • 48. MOSIER A.R., MOHANTY S.K., BHADRACHMAL A., CHARKRAVARTII S.P. (1990). Evolu­tion dinitrogen and nitrous oxide from the soil to atmosphere through rice plants. Biol. Fertil. Soils 9: 31- 36.
  • 49. NEWTON M.E., HASSAN B.A., ZAVITOWSKI J. (1968). Role of Alder in western Oregon Forest succesion. In: Biology of Alder. ,J.M. Trape., J.F. Franklin, R.F. Tarraule, G.M. Hanson (eds),USDA Forestry Service, Pacitre North-west Forest and Range Experimental Station Portland, pp 78-84.
  • 50. NUR J., OKON Y. (1980). An increase in nitrogen content of Setaria italica and Zeamaus inoculated with Azospirillium. Can. J. Microbiol. 26: 482-485.
  • 51. NYE P.H., TINKER P.B. (1977). Solite movement in the soil root system. Barclay University of California Press, pp 342.
  • 52. OKON Y., HEYFLER P.G., HARDY R.W.F. (1983). N2 fixation by Azospirillium brasilense and its incorporarion into host Setaria italica. Appl. Environ. Microbiol. 46: 694-697.
  • 53. PAUL E.A., CLARK F.E. (1989). Soil Microbiology and Biochemistry. Academic Press, New York.
  • 54. PAUL E.A., VORONEY R.P. (1984). Field interpretation of microbial biomass activity and measurements. In: Current Perspectives in Microbial Ecology., M.J. Klug and C.A. Reddy (eds) Amer. Soc. Microbiol., Washington D.C., pp 509.
  • 55. PELCZAR M.J., CHAN E.C.S., KRIEG N.R. (1993). Microbiology of the Soil and the Atmosphere. In Microbiology: Concepts and Applications. International Edition. Mc Graw-Hill. Inc., pp 772-805.
  • 56. PETERS S.K.N., FROST J.W., LONG S.R. (1986). A plant flavons, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science, 223: 977-979.
  • 57. PRADE K., TROLLDENIER G. (1990). Denitrification in the rhizosphere of plants with in barley different aereuchyma formation: wheat (Triticum aestivum L) and rice (Oryzae sativa L.).,.Biol.Fertil. Soil 9: 215-219.
  • 58. RAINS D.W., TALLEY S.N., (1979). Uses Azolla in North Amrica. In Nitrogen and Rice. Research Institute, Los Banos, Philipines, pp 419-431.
  • 59. REDDEL P., ROSBROOK P.A., BOWEN G.D., GWAZE D. (1988). Growth responses in Causerinacunninghaniense plans to inoculation with Frankia., Plant Soil 108 : 79-86.
  • 60. REDDY K.R., SACCON P.D., GRAETZ D.A. (1980). Nitrate reduction in an organic soil-water system. J. Environ. Qual. 9: 283-288.
  • 61. REDMOND J.R., BATLEY M., DJORDJEVIC M.A., INES R.W., KUEMPEL P., ROLFE B. (1986). Flavones induce the expression of nodulation genes in Rhizobium. Nature, 323: 632-635.
  • 62. RICHARDSON H.L. (1938). Nitrification in grassland soils with special reference to the Rothamsted Park Grass experiment. J. Agric. Sci. 28: 73-121.
  • 63. ROGER P.A., ZIMMERMAN W.J., LUMPKIN T.A. (1992). Microbiological management of wetland rice field. In: Soil Microbiol. Ecologie., Ed. F. Blaine Metting. Jr. , pp 417-456.
  • 64. RONSON C.W., NIXON B.T., ALBRIGHT L., AUSLIBEL F.M. (1987). Rhizobium meliloti Ntr A(rpoN) gene is required for diverse metabolic functions. J. Bacteriol. 169: 2424-2431.
  • 65. ROY A.B., SUBIR A. (1962). Nature, 194: 604-605.
  • 66. SCHLOESING Т., MUNTZ A. (1877). In: Ecologe Microbiene du Sol., Y.R. Dommergues et F. Mangenot (ed). Masson, Paris 1970, pp 198-211.
  • 67. SCHWINTZER G.R., TJEPKEMA J.D. (1990). The Biology of Frankia and Actinorhizal Plants. Academic Press, New York.
  • 68. SCOTT D.B., COURT G.B., RONSON C.W., SCOTT K.F., WATSON J.M., SCHOEFIELD P.R., SHINE J. (1984.) Organization of nodulation of nitrogen fixation genes on a Rhizobium trifolii symbiotic plazmide. Appl. Microbiol. 139: 151-157.
  • 69. SINGH A.L., SINGH P.K. (1986a). Comparative studies on different methods of Azolla utilization in rice culture. J. Agric. Sci. 107: 273-278.
  • 70. SINGH A.L. SING P.K. (1986b). Relative effects of Azolla pinnata and its cmbination with chemical nitrogen fertilizers on growth yielding and N uptake of rice. J. Agric. Sci. 106: 107-117.
  • 71. SMITH J.L., ELLIOTT L.F. (1990). Tillage and residue management effects on soil organic matter dynamics in semiarid region. Adv. Soil Sci. 13: 69-85.
  • 72. SMITH J.L., PAUL E.A. (1990). The significance of soil microbial biomass estimations. Soil Biochem. 6: 357-392.
  • 73. SSOUGOUFERA В., DIEM H.G., DOMMERGUES Y.R. (1989). Response of Field grown Causerina equisetifolia to inoculation with Frankia strain ORS021001 entrapped in alginate beads. Plant Soil (spec, vol.), pp 335-348.
  • 74. STEVENSON F. J. (1982). Origin and distribution of nitrogen in soil, pp 1-4, In: Stevenson F.J. (ed), Nitrogen in Agricultural Soils. Agronomy monograph No 22, Amer.Society of Agronomy, Madison, Wise.
  • 75. STRZELEC A. (1984). Wpływ herbicydów na przemiany biochemiczne zachodzące w glebie. Rocz. Glebozn. 35: 107-121.
  • 76. STRZELEC A., KOBUS J. (1979). Wpływ nawożenia słomą i fosforanem wapnia na jej aktywność biologiczną. Rocz. Glebozn. 30: 93-107.
  • 77. SZETO W.W., ZIMMERMAN L.L., SANDERSON W., AUSUBEL F.M. (1984). A Rhizobium meliloti symbiotic regulatory gene. Cell. 36: 1035-1043.
  • 78. TARRANT R.F., TRAPPE J.M. (1971). The role of Alnus in improving the forest environment. Plant Soil (spec, vol.), pp 335-348.
  • 79. TIEDJE J.M. (1988). Ecology of denitrification and dissimilatory nitrate reduction to ammonium ., pp 197-243, In: Zehender A.J.B. (ed), Biology of Anaeorobic Microorganisms, Wiley, New York.
  • 80. TORREY J.G., TJEPKEMA J.D. (1979). Symbiotic nitrogen fixation in actinomycetes-nodulated plants. Pref. Bot. Gaz. 140 (suppl.), pp 81-84.
  • 81. VAN SCHREWAN D.A. (1965). Annales Inst. Pasteur 109: 19-45.
  • 82. VANCE C.P. (1991). Roots bacteria interactions. Symbiotic nitrogen fixation. In: Plant Roots. The Hidden half. Y. Waisel A. Eshel, U. Kafkafi (eds), Marcel Dekker Inc., New York, Basel, Hong Kong, pp 671-705.
  • 83. VERHAGEN F.I.M., LAANDBROCK H.J. (1991).Competition for ammonium between nitrifying and heterotrophic bacteria in dual energy-limited chemostats. Appl. Environ. Microbiol. 57: 3255-3263.
  • 84. VERHAGEN F.I.M., DUTYS H., LAANBROCK H.J. (1992). Competition for ammonium between nitrifyings and heterotrophic bacteria in continously percolated soil columns. Appl.Environm. Microbiol. 58: 3303-3311.
  • 85. VINCENT J. (1980). Factors controlling the Rhizobium - legume symbiosis. In: Nitrogen Fixation, vol. 2. Symbiotic Association and Cyanobacteria. E. Newton, Armer-Johanson (eds), University Park Press, Baltimore, pp 103-129.
  • 86. WARING J.A., GILLIAM J.W. (1983).The effect of acidity on nitrate reduction and denitrification in lower coastal plain soils. Soil Sci. Soc. Am. J. 47: 246-251.
  • 87. WATANABE J., RAMIREZ C. (1984). Relationships between soil phosphorus availability and Azolla growth. Soil Sci. Plant Nutr. 30: 595-598.
  • 88. WEBER G., REICANDER H., PUHLER A. (1985). Mapping and exppresion of a regulatory nitrogen fixation gene (fixD) of Rhizobium meliloti. EMBOJ, 4: 2751-2756.
  • 89. WOOMER P., BENNET J., YOST R. (1990). Overcoming the inflexibility of most probable-number procedure. Agron. J. 82: 349-353.
  • 90. WUSS-DANEK K. (1977). Nitrogen fixation by Stereocaulon paschale under fixed conditions. Can. J. Bot. 55: 585-592.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-0a6c56bf-02c3-4ebf-b6d1-779c72810346
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.