Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 3 |
Tytuł artykułu

Greenhouse gas emissions of one-day-old chick production

Warianty tytułu
Języki publikacji
We used life cycle assessment (LCA) methodology to assess the environmental impacts of greenhouse gas (GHG) emissions resulting from one-day-old chick production. The system boundary was set from hatching to the farm gate and involved the three main processes as parent farms, chicken feed production, and hatchery processing. The two main objectives were first to accumulate essential data for green supply chain management throughout the three processes of one-day-old chick production, and second, to identify hotspots and find a holistic solution to reduce GHG emissions within the system boundary. Eight combinations of one-day-old chick production were identified. Results determined that GHG emissions varied between 337 and 383 g CO₂ eq/day-old chick, depending on the combination. Chicken feed processing caused the highest impact at 45-55% as a result of the protein and energy-rich ingredients in the feed formulas. The replacement of chicken feed ingredients with dried distillers grain with solubles (DDGS), peas, cassava root, and cassava leaves was investigated. The best alternative was cassava root, which reduced GHG emissions between 5% and 6%.
Słowa kluczowe
Opis fizyczny
  • Excellent Centre of Eco-Energy (ECEE), Department of Chemical Engineering, Faculty of Engineering, Thammasat University, Pathumthani 12120, Thailand
  • Excellent Centre of Eco-Energy (ECEE), Department of Chemical Engineering, Faculty of Engineering, Thammasat University, Pathumthani 12120, Thailand
  • 1. Thai Broiler Processing Exporters Association, Thai chicken meat export statistic 2015, Available online:, (accessed on 15/06/2016), 2015.
  • 2. FAOSTAT, Food and agriculture organization of the United Nations, Statistic Division, Available online:, (accessed on 14/02/2016), 2016.
  • 3. FRIEL S., DANGOUR A.D., GARNETT T., LOCK K., CHALABI Z., ROBERTS I., BUTLER A., BUTLER C.D., WAAGE J., MCMICHAEL A.J., HAINES A. Public health benefits of strategies to reduce greenhouse-gas emission: food and agriculture. Lancet. 374 (9706), 2022, 2009.
  • 4. VAN DER GOOT A.J., PELGROM P.J.M., BERGHOUT J.A.M., GEERTS M.E.J., JANKOWIAK L., HARDT N.A., KEIJER J., SCHUTYSER M.A.I., NIKIFORIDIS C.V., BOOM R.M. Concepts for further sustainable production of foods. J Food Eng. 168, 43, 2016.
  • 5. GURLUK S., UZEL G., TURAN O. Impacts of cattle and sheep husbandry on global greenhouse gas emissions: a time series analysis for central European countries. Pol J Environ Stud. 24 (1), 94, 2015.
  • 6. STEINFELD H., GERBER P., WASSENAAR T., CASTEL V., ROSALES M., DE HANN C. Livestock’s long shadow: environmental issues and options, Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. 2006.
  • 7. VESHAGH A., OBAGUN A. Survey of sustainable life cycle design and management, Proc. the 14th CIIRP Conference on Life Cycle Engineering ‘Advances in Life Cycle Engineering for Sustainable Manufacturing Business’, Springer, London, 237, 2007.
  • 8. INGRAO C., GIUDICE A.L., BACENETTI J., KHANEGHAH A.M., SANT’S ANA A.S., RANA R., SIRACUSA V. Foamy polystyrene trays for fresh-meat packaging: life-cycle inventory data collection and environmental impact assessment. Food Res Int. 76, 418, 2015.
  • 9. ROY P., NEI D., ORIKASA T., XU Q., OKADOME H., NAKAMURA N., SHIINA T. A review of life cycle assessment (LCA) on some food products. J Food Eng. 90 (1), 3, 2009.
  • 10. ISO14040, Environmental management-Life cycle assessment-Principles and framework (ISO14040: 2006), European Standard EN ISO 14040, The International Organization for Standardization, Geneva, Switzerland, 2006.
  • 11. LEINONEN I., WILLIAMS A.G., WISEMAN J., GUY J., KYRIAZAKIS I. Predicting the environmental impacts of chicken systems in the United Kingdom through a life cycle assessment: egg production systems. Poultry Sci. 91 (1), 26, 2012.
  • 12. PELLETIER N., IBARBURU M., XIN H. A carbon footprint analysis of egg production and processing supply chains in the Midwestern United States. J Clean Prod. 54, 108, 2013.
  • 13. MOLLENHORST H., BERENTSEN P.B., DE BOER I.J. On-farm quantification of sustainability indicators: an application to egg production systems. Brit Poultry Sci. 47 (4), 405, 2006.
  • 14. GONZALEZ-GARCIA S., GOMEZ-FERNANDEZ Z., DIAS A.C., FEIJOO G., MOREIRA M.T., ARROJA L. Life cycle assessment of broiler chicken production: a Portuguese case study. J Clean Prod. 74, 125, 2014.
  • 15. THEVENOT A., AUBIN J., TILLARD E., VAYSSIERES J. Accounting for farm diversity in life cycle assessment studies-the case of poultry production in a tropical island. J Clean Prod. 57, 280, 2013.
  • 16. PELLETIER N. Environmental performance in the US broiler poultry sector: life cycle energy use and greenhouse gas, ozone depleting, acidifying and eutrophying emissions. Agr Syst. 98 (2), 67, 2008.
  • 17. PRUDENCIO DA SILVA V., VAN DER WERF H.M.G., SOARES S.R., CORSON M.S. Environmental impacts of French and Brazilian broiler chicken production scenarios: An LCA approach. J Environ Manage. 133, 222, 2014.
  • 18. TONGPOOL R., PHANICHAVALIT N., YUVANIYAMA C., MUNGCHAROEN T. Improvement of the environmental performance of broiler feeds: a study via life cycle assessment. J Clean Prod. 35, 19, 2012.
  • 19. FREITAS DE ALVARENGA R.A., PRUDENCIO DA SILVA JUNIOR V., SOARES S.R. Comparison of the ecological footprint and a life cycle assessment method for a case study on Brazilian broiler feed production. J Clean Prod. 28, 25, 2012.
  • 20. COLLADO-RUIZ D., OSTAD-AHMAD-GHORABI H. Fuon theory: standardizing functional units for product design. Resour Conserv Recy. 54 (10), 684, 2010.
  • 21. MTEC. Thai national life cycle inventory database, National Metal and Materials Technology Center National Science and Technology Development Agency of Thailand, Pathumthani, Thailand, 2014.
  • 22. ECOINVENT CENTRE. Ecoinvent Database Ver.2.2. categories for processes, Ecoinvent Centre, Swiss Centre for Life Cycle Inventories, Zurich, Switzerland, 2010.
  • 23. BENGTSSON J., SEDDON J. Cradle to retailer or quick service restaurant gate life cycle assessment of chicken products in Australia. J Clean Prod. 41, 291, 2013.
  • 24. BOGGIA A., PAOLOTTI L., CASTELLINI C. Environmental impact evaluation of conventional, organic and organic-plus poultry production systems using life cycle assessment. World Poultry Sci J. 66, 95, 2010.
  • 25. MACLEOD M., GERBER P., MOTTET A., TEMPIO G., FALCUCCI A., OPIO C., VELLINGA T., HENDERSON B., STEINFELD H. Greenhouse gas emissions from pig and chicken supply chains-a global life cycle assess, Food and Agriculture Organization of the United Nations (FAO), Rome, Italy, 2013.
  • 26. IPCC. Emissions from livestock and manure management, In: Agriculture, Forestry and Other Land Use, Vol. 4, Intergovernmental Panel on Climate Change, Available online:, (accessed on 8/02/2016), 2006.
  • 27. NIELSEN N.I., JORGENSEN M., BAHRNDORFF S., Greenhouse gas emission from The Danish broiler production estimation via LCA methodology, Knowledge Centre for Agriculture, Denmark, Available online:, (accessed on 24/02/2016), 2011.
  • 28. BAUMGARTNER D.U., DE BANN L., NEMECK T. European grain legumes-environmental-friendly animal feed: life cycle assessment of pork, chicken meat, egg and milk production. Grain legumes integrated project report. Agroscope Rechenholz-Tanikon Research Station ART. Zurich, Switzerland, 2008.
  • 29. CASTELL A.G., GUENTER W., IGBASAN F.A. Nutritive value of peas for nonruminant diets. Animal Feed Science and Technology. 60 (3-4), 209, 1996.
  • 30. NOLL S., FARAHAT M.H. How alternative food ingredients affect poultry dietary electrolyte balance, Agricultural Utilization Research Institute, Minnesota, USA, Available online:, (accessed on 21/03/2016), 2012.
  • 31. SPRING P. The challenge of cost effective poultry and animal nutrition: optimizing existing and applying novel concepts. Lohmann Information. 48 (1), 38, 2013.
  • 32. CHOI H.S., LEE H.L., SHIN M.H., CHEORUN J., LEE S.K., LEE B.D. Nutritive and economic values of corn distiller’s dried grains with solubles in broiler diets. Asian Austral J Anim. 21 (3), 417, 2008.
  • 33. LIMSILA A., TUNGSAKUL S., SARAWAT P., WATANANONTA W., BOONSING A., PICHITPORN S., HOWELER R.H. Cassava leaf production research in Thailand, Proc. the 7th Regional Workshop held in Bangkok ‘Cassava Research and Development in Asia: Exploring New Opportunities for and Ancient Crop’, Centro International de Agriculture Tropical, Thailand, 472, 2002.
  • 34. ABU O.A., OLALERU I.F., OKE T.D., ADEPEGBA V.A., USMAN B. Performance of broiler chicken fed diets containing cassava peel and leaf meals as replacements for maize and soya bean meal. IJST. 4 (4), 172, 2015.
  • 35. KYAWT Y.Y., TOYAMA H., HTWE W.M., THAIKUA S. Effects of cassava substitute for maize based diets on performance characteristics and egg quality of laying hens. IJPS. 13 (9), 522, 2014.
  • 36. ANAETO M., ADIGHIBE L.C. Cassava root meal as substitute for maize in layers ration. Rev. Bras. Cienc. Avic. 13 (2), 155, 2011.
  • 37. KNUDSEN M.T., HERMANSE J.E., OLESEN J.E., TOPP C.F.E., SCHELDE K., ANGELOPOULOS N., RECKLING M. Climate impact of producing more grain legumes in Europe, Proc. the 9th International Conference on Life Cycle Assessment in the Agri-Food Sector ‘LCA Food 2014’, San Francisco, USA, 645, 2014.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.