PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 40 | 02 |

Tytuł artykułu

Coping with iron limitation: a metabolomic study of Synechocystis sp. PCC 6803

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Iron (Fe) is a key element for all living systems, especially for photosynthetic organisms because of its important role in the photosynthetic electron transport chain. Fe limitation in cyanobacteria leads to several physiological and morphological changes. However, the overall metabolic responses to Fe limitation are still poorly understood. In this study, we integrated elemental, stoichiometric, macromolecular, and metabolomic data to shed light on the responses of Synechocystis sp. PCC 6803, a non-N₂-fixing freshwater cyanobacterium, to Fe limitation. Compared to Synechocystis growing at nutrient replete conditions, Fe-limited cultures had lower growth rates and amounts of chlorophyll a, RNA, RNA:DNA, C, N, and P, and higher ratios of protein:RNA, C:N, C:P, and N:P, in accordance with the growth rate hypothesis which predicts faster growing organisms will have decreased biomass RNA contents and C:P and N:P ratios. Fe-limited Synechocystis had lower amounts Fe, Mn, and Mo, and higher amount of Cu. Several changes in amino acids of cultures growing under Fe limitation suggest nitrogen limitation. In addition, we found substantial increases in stress-related metabolites in Fe-limited cyanobacteria such antioxidants. This study represents an advance in understanding the stoichiometric, macromolecular, and metabolic strategies that cyanobacteria use to cope with Fe limitation. This information, moreover, may further understanding of changes in cyanobacterial functions under scenarios of Fe limitation in aquatic ecosystems.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

40

Numer

02

Opis fizyczny

Article 28 [13p.], fig.,ref.

Twórcy

  • Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Boulevard, Richland, WA 99354, USA
  • CREAF, Cerdanyola del Valles, 08913 Catalonia, Spain
  • School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
  • USDA‑ARS, Crops Pathology and Genetics Research Unit, University of California, Davis, CA 95616, USA
autor
  • CREAF, Cerdanyola del Valles, 08913 Catalonia, Spain
  • CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Valles, 08913 Catalonia, Spain
autor
  • CREAF, Cerdanyola del Valles, 08913 Catalonia, Spain
  • CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès, 08913 Catalonia, Spain
  • Service of Nuclear Magnetic Resonance, Faculty of Sciences and Biosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Catalonia, Spain
  • Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, England, U.K.
autor
  • Global Change Research Institute, Czech Academy of Sciences, Belidla 986/4a, 603 00 Brno, Czech Republic
autor
  • Global Change Research Institute, Czech Academy of Sciences, Belidla 986/4a, 603 00 Brno, Czech Republic
autor
  • School of Life Sciences, Arizona State University, Tempe, AZ 85287‑4501, USA

Bibliografia

  • Allen MM (1968) Simple conditions for growth of unicellular blue-green algae on plates. J Phycol 4:1–4
  • Baniulis D, Yamashita E, Zhang H, Hasan SS, Cramer WA (2008) Structure–function of the cytochrome b ₆f complex. Photochem Photobiol 84:1349–1358
  • Behrenfeld MJ (1999) Widespread iron limitation of phytoplankton in the south Pacific Ocean. Science 283:840–843
  • Behrenfeld MJ, Milligan AJ (2013) Photophysiological expressions of iron stress in phytoplankton. Annu Rev Mar Sci 5:217–246
  • Behrenfeld M, Bale A, Kolber Z et al (1996) Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific-Ocean. Nature 383:508–511
  • Bellenger J-P, Wichard T, Xu Y, Kraepiel AML (2011) Essential metals for nitrogen fixation in a free-living N₂-fixing bacterium: chelation, homeostasis and high use efficiency. Environ Microbiol 13:1395–1411
  • Bennette NB, Eng JF, Dismukes GC (2011) An LC–MS-based chemical and analytical method for targeted metabolite quantification in the model cyanobacterium Synechococcus sp. PCC 7002. Anal Chem 83:3808–3816
  • Bibby TS, Nield J, Barber J (2001) Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria. Nature 412:743–745
  • Bowman WD, Cleveland CC, Halada Ĺ et al (2008) Negative impact of nitrogen deposition on soil buffering capacity. Nat Geosci 1:767–770
  • Castielli O, De la Cerda B, Navarro JA et al (2009) Proteomic analyses of the response of cyanobacteria to different stress conditions. FEBS Lett 583:1753–1758
  • Cooley JW, Vermaas WF (2001) Succinate dehydrogenase and other respiratory pathways in thylakoid membranes of Synechocystis sp. strain PCC 6803: capacity comparisons and physiological function. J Bacteriol 183:4251–4258
  • da Silva JJRF, Williams RJP (2001) The biological chemistry of the elements: the inorganic chemistry of life. Oxford University Press, New York, pp 1–583. ISBN: 0198508484
  • Dang TC, Fujii M, Rose AL et al (2012) Characteristics of the freshwater cyanobacterium Microcystis aeruginosa grown in iron-limited continuous culture. Appl Environ Microbiol 78:1574–1583
  • Dejean S, Gonzalez I, Le Cao K (2013) mixOmics: Omics Data Integration Project. R package version 5.0-1. http://CRAN.R-project.org/package=mixOmics
  • DeLong EF, Karl DM (2005) Genomic perspectives in microbial oceanography. Nature 437:336–342
  • Elser JJ, Dobberfuhl DR, MacKay NA, Schampel JH (1996) Organism size, life history, and N:P stoichiometry. Bioscience 46:674–684
  • Elser JJ, Sterner RW, Gorokhova E et al (2008) Biological stoichiometry from genes to ecosystems. Ecol Lett 3:540–550
  • Farkas E, Csóka H, Micera G, Dessi A (1997) Copper(II), nickel(II), zinc(II), and molybdenum(VI) complexes of desferrioxamine B in aqueous solution. J Inorg Biochem 65:281–286
  • Ferreira F, Straus NA (1994) Iron deprivation in cyanobacteria. J Appl Phycol 6:199–210
  • Fiehn O (2002) Metabolomics - the link between genotypes and phenotypes. Plant Mol Biol 48:155–171
  • Flores E, Frías JE, Rubio LM, Herrero A (2005) Photosynthetic nitrate assimilation in cyanobacteria. Photosynth Res 83:117–133
  • Fox J, Weisberg S (2011) An R companion to applied regression. R package, 2nd edn. Sage, Thousand Oaks CA. http://socserv.socsci.mcmaster.ca/jfox/Books/Companion
  • Gargallo-Garriga A, Sardans J, Pérez-Trujillo M et al (2014) Opposite metabolic responses of shoots and roots to drought. Sci Rep 4:6829
  • Gargallo-Garriga A, Sardans J, Pérez-Trujillo M et al (2015) Warming differentially influences the effects of drought on stoichiometry and metabolomics in shoots and roots. New Phytol 207:591–603
  • Gründel M, Scheunemann R, Lockau W, Zilliges Y (2012) Impaired glycogen synthesis causes metabolic overflow reactions and affects stress responses in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology 158:3032–3043
  • Hagemann M (2011) Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol Rev 35:87–123
  • Hasunuma T, Kikuyama F, Matsuda M et al (2013) Dynamic metabolic profiling of cyanobacterial glycogen biosynthesis under conditions of nitrate depletion. J Exp Bot 64:2943–2954
  • Hernández-Prieto MA, Schön V, Georg J et al (2012) Iron deprivation in Synechocystis: inference of pathways, non-coding RNAs, and regulatory elements from comprehensive expression profiling. G3 (Bethesda) 2:1475–1495
  • Houshyani B, Kabouw P, Muth D et al (2012) Characterization of the natural variation in Arabidopsis thaliana metabolome by the analysis of metabolic distance. Metabolomics 8:131–145
  • Huege J, Goetze J, Schwarz D et al (2011) Modulation of the major paths of carbon in photorespiratory mutants of synechocystis. PLoS One 6:e16278
  • Jones OAH, Maguire ML, Griffin JL et al (2013) Metabolomics and its use in ecology. Austral Ecol 38:713–720
  • Kaneko T, Sato S, Kotani H et al (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3:109–136
  • Katoh H, Hagino N, Grossman AR, Ogawa T (2001a) Genes essential to iron transport in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 183:2779–2784
  • Katoh H, Hagino N, Ogawa T (2001b) Iron-binding activity of FutA1 subunit of an ABC-type iron transporter in the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Cell Physiol 42:823–827
  • Kellom M, Poret-Peterson AT, Rivas-Ubach A et al (2018) Transcriptomics of iron limitation without growth media chelation in the cyanobacterium Synechocystis sp. PCC 6803 (Submitted)
  • Keren N, Aurora R, Pakrasi HB (2004) Critical roles of bacterioferritins in iron storage and proliferation of cyanobacteria. Plant Physiol 135:1666–1673
  • Knoop H, Gründel M, Zilliges Y et al (2013) Flux balance analysis of cyanobacterial metabolism: the metabolic network of Synechocystis sp. PCC 6803. PLoS Comput Biol 9:e1003081
  • Kopf M, Klähn S, Scholz I et al (2014) Comparative analysis of the primary transcriptome of Synechocystis sp. PCC 6803. DNA Res 21:527–539
  • Kranzler C, Lis H, Finkel OM et al (2014) Coordinated transporter activity shapes high-affinity iron acquisition in cyanobacteria. ISME J 8:409–417
  • Krieg N, Parte A, Ludwig W et al (2010) Bergey’s manual of systematic bacteriology, vol 4. The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes. Springer, New York
  • Latifi A, Ruiz M, Zhang C-C (2009) Oxidative stress in cyanobacteria. FEMS Microbiol Rev 33:258–278
  • Lee DY, Fiehn O (2013) Metabolomic response of Chlamydomonas reinhardtii to the inhibition of target of rapamycin (TOR) by rapamycin. J Microbiol Biotechnol 23:923–931
  • Leiss KA, Cristofori G, van Steenis R et al (2013) An eco-metabolomic study of host plant resistance to Western flower thrips in cultivated, biofortified and wild carrots. Phytochemistry 93:63–70
  • Lengeler J, Drews G, Schlegel H (1999) Biology of the prokaryotes. Wiley-Blackwell, Hoboken, pp 1–984
  • Macel M, Van Dam NM, Keurentjes JJB (2010) Metabolomics: the chemistry between ecology and genetics. Mol Ecol Resour 10:583–593
  • Mackey KRM, Post AF, McIlvin MR et al (2015) Divergent responses of Atlantic coastal and oceanic Synechococcus to iron limitation. Proc Natl Acad Sci USA 112:9944–9949
  • Maeda H, Sakuragi Y, Bryant DA, Dellapenna D (2005) Tocopherols protect Synechocystis sp. strain PCC 6803 from lipid peroxidation. Plant Physiol 138:1422–1435
  • Mari A, Lyon D, Fragner L et al (2013) Phytochemical composition of Potentilla anserina L. analyzed by an integrative GC–MS and LC–MS metabolomics platform. Metabolomics 9:599–607
  • Ogawa T, Bao DH, Katoh H et al (2002) A two-component signal transduction pathway regulates manganese homeostasis in Synechocystis 6803, a photosynthetic organism. J Biol Chem 277:28981–28986
  • Oksanen J, Guillaume-Blanchet F, Kindt R et al (2013) vegan: community ecology package. R package version 2.0-9. http://CRAN.R-project.org/package=vegan
  • Orr JC, Fabry VJ, Aumont O et al (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686
  • Osanai T, Oikawa A, Shirai T et al (2014) Capillary electrophoresis-mass spectrometry reveals the distribution of carbon metabolites during nitrogen starvation in Synechocystis sp. PCC 6803. Environ Microbiol 16:512–524
  • Papageorgiou GC, Murata N (1995) The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving Photosystem II complex. Photosynth Res 44:243–252
  • Peñuelas J, Sardans J (2009) Ecological metabolomics. Chem Ecol 25:305–309
  • Pluskal T, Castillo S, Villar-Briones A, Orešič M (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform 11:395
  • R Core Team (2013) R: a language and environment for statistical computing. R package
  • Raven JA, Evans MCW, Korb RE (1999) The role of trace metals in photosynthetic electron transport in O₂-evolving organisms. Photosynth Res 60:111–150
  • Richardson DJ (2000) Bacterial respiration: a flexible process for a changing environment. Microbiology 146(Pt 3):551–571
  • Rivas-Ubach A, Sardans J, Pérez-Trujillo M et al (2012) Strong relationship between elemental stoichiometry and metabolome in plants. Proc Natl Acad Sci 109:4181–4186
  • Rivas-Ubach A, Pérez-Trujillo M, Sardans J et al (2013) Ecometabolomics: optimized NMR-based method. Methods Ecol Evol 4:464–473
  • Rivas-Ubach A, Gargallo-Garriga A, Sardans J et al (2014) Drought enhances folivory by shifting foliar metabolomes in Quercus ilex trees. New Phytol 202:874–885
  • Rivas-Ubach A, Barbeta A, Sardans J et al (2016a) Topsoil depth substantially influences the responses to drought of the foliar metabolomes of Mediterranean forests. Perspect Plant Ecol Evol Syst 21:41–54
  • Rivas-Ubach A, Sardans J, Hódar JA et al (2016b) Similar local but different systemic metabolomic responses of closely related pine subspecies to folivory by caterpillars of the processionary moth. Plant Biol 18:484–494
  • Rivas-Ubach A, Hódar JA, Sardans J et al (2016c) Are the metabolic responses to folivory of closely related plant species linked to macroevolutionary and plant-folivore coevolutionary processes? Ecol Evol 6:4372–4386
  • Rivas-Ubach A, Sardans J, Hódar JA et al (2017) Close and distant: contrasting the metabolism of two closely related subspecies of Scots pine under the effects of folivory and summer drought. Ecol Evol. https://doi.org/10.1002/ece3.3343
  • Ryan-Keogh TJ, Macey AI, Cockshutt AM et al (2012) The cyanobacterial chlorophyll-binding-protein IsiA acts to increase the in vivo effective absorption cross-section of psi under iron limitation. J Phycol 48:145–154
  • Sharon S, Salomon E, Kranzler C et al (2014) The hierarchy of transition metal homeostasis: iron controls manganese accumulation in a unicellular cyanobacterium. Biochim Biophys Acta 1837:1990–1997
  • Shcolnick S, Keren N (2006) Metal homeostasis in cyanobacteria and chloroplasts. Balancing benefits and risks to the photosynthetic apparatus. Plant Physiol 141:805–810
  • Shcolnick S, Summerfield TC, Reytman L et al (2009) The mechanism of iron homeostasis in the unicellular cyanobacterium Synechocystis sp. PCC 6803 and its relationship to oxidative stress. Plant Physiol 150:2045–2056
  • Shi D, Xu Y, Hopkinson BM, Morel FMM (2010) Effect of ocean acidification on iron availability to marine phytoplankton. Science 327:676–679
  • Shi D, Kranz SA, Kim J-M, Morel FMM (2012) Ocean acidification slows nitrogen fixation and growth in the dominant diazotroph Trichodesmium under low-iron conditions. Proc Natl Acad Sci USA 109:E3094–E3100
  • Singh AK, Chakravarthy D, Singh TPK, Singh HN (1996) Evidence for a role for l-proline as a salinity protectant in the cyanobacterium Nostoc muscorum. Plant Cell Environ 19:490–494
  • Singh AK, Li H, Sherman LA (2004) Microarray analysis and redox control of gene expression in the cyanobacterium Synechocystis sp. PCC 6803. Physiol Plant 120:27–35
  • Sterner R, Elser J (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton, pp 1–439. ISBN: 0691074909
  • Steuer R, Kurths J, Fiehn O, Weckwerth W (2003) Observing and interpreting correlations in metabolomic networks. Bioinformatics 19:1019–1026
  • Sumner LW, Amberg A, Barrett D et al (2007) Proposed minimum reporting standards for chemical analysis. Metabolomics 3:211–221
  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97
  • t’Kindt R, De Veylder L, Storme M et al (2008) LC–MS metabolic profiling of Arabidopsis thaliana plant leaves and cell cultures: optimization of pre-LC–MS procedure parameters. J Chromatogr B Analyt Technol Biomed Life Sci 871:37–43
  • Tovar-Sanchez A, Sañudo-Wilhelmy SA, Garcia-Vargas M et al (2003) A trace metal clean reagent to remove surface-bound iron from marine phytoplankton. Mar Chem 82:91–99
  • Vitousek PM, Aber JD, Howarth RW et al (1997) Human alteration of the global nitrogen cycle: sources and cosequences. Ecol Appl 7:737–750
  • Vrede T, Tranvik LJ (2006) Iron constraints on planktonic primary production in oligotrophic lakes. Ecosystems 9:1094–1105
  • Wilson A, Boulay C, Wilde A et al (2007) Light-induced energy dissipation in iron-starved cyanobacteria: roles of OCP and IsiA proteins. Plant Cell 19:656–672

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-0a0cdb65-bda4-4b5f-8295-5c4b997fae67
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.