PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | 75 | 3 |

Tytuł artykułu

Pomegranate juice treatment reverses carbon tetrachloride (CCl4)-induced increased acetylcholinesterase activity and cell death via suppression of oxidative stress in rats

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background. Environmental pollution, including exposure to carbon tetrachloride (CCl4), poses serious health risks, particularly through oxidative stress, which may lead to neurodegenerative damage. Antioxidants, especially those found in natural products, show potential in mitigating these toxic effects. Pomegranate juice (PJ), rich in bioactive phytochemicals, has demonstrated antioxidant, anti-inflammatory, and neuroprotective properties. Objective. This study aimed to investigate the protective effects of PJ on neurotoxicity induced by CCl4 in rats, assessing specific markers of oxidative stress, enzymatic activity, and apoptotic cell death. Material and Methods. Twenty-eight male Wistar rats were divided into four groups: Control, CCl4, PJ, and CCl4+PJ. The CCl4 group received intraperitoneal injections of CCl4 (0.2 ml/100 g) twice weekly for six weeks, while the PJ group received PJ orally (4 ml/kg) daily for 30 days. The CCl4+PJ group received both treatments in sequence. Brain tissues were analysed for malondialdehyde (MDA), reduced glutathione (GSH), acetylcholinesterase (AChE), glutathione S-transferase (GST), glutathione reductase (GR), and carboxylesterase (CaE) activity. Apoptotic cell death was assessed using TUNEL staining. Results. CCl4 exposure resulted in a marked increase in MDA levels and AChE activity in brain tissue (p<0.05), alongside a significant decrease in reduced GSH levels and GST activity (p<0.05). Treatment with PJ significantly lowered MDA levels and AChE activity in the CCl4+PJ group compared to the CCl4 group (p<0.05). However, GSH levels and GST activity showed no significant changes in the CCl4+PJ group. TUNEL staining indicated a reduction in apoptotic cells in the CCl4+PJ group versus the CCl4 group, suggesting reduced cellular damage with PJ treatment (p<0.05). Conclusions. PJ demonstrates neuroprotective potential against CCl4-induced oxidative stress and neurotoxicity in rats by reducing oxidative markers and apoptosis. These findings suggest that PJ could serve as a natural protective agent against neurodegenerative risks associated with environmental pollutants like CCl4.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

75

Numer

3

Opis fizyczny

p.293-302,fig.,ref.

Twórcy

autor
  • Department of Physiology, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey
autor
  • Department of Histology and Embryology, Faculty of Medicine, Adiyaman University, Turkey
autor
  • Department of Biology, Faculty of Science and Art, Cankiri Karatekin University, Turkey
autor
  • Department of Food Engineering, Faculty of Engineering, Adiyaman University, Turkey
autor
  • Department of Chemistry and Chemical Processing Techniques, Vocational School of Technical Sciences, Adıyaman University, Turkey
autor
  • Department of Science Education, Faculty of Education, Adiyaman University, Turkey
autor
  • Department of Medical Biology and Genetics, Faculty of Medicine, Adiyaman University, Turkey
autor
  • Department of Chemistry, Faculty of Science and Art, Adiyaman University, Turkey
autor
  • Department of Physiology, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey
autor
  • Faculty of Veterinary Medicine, Veterinary Internal Diseases, Ataturk University, Turkey

Bibliografia

  • 1. Josey KP, Delaney SW, Wu X, Nethery RC, DeSouza P, Braun D, et al. Air Pollution and Mortality at the Intersection of Race and Social Class. N Engl J Med. 2023;388(15):1396-1404. doi:10.1056/NEJMsa2300523.
  • 2. Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E. Environmental and Health Impacts of Air Pollution: A Review. Front Public Health. 2020;8:14.doi: 10.3389/fpubh.2020.00014/full.
  • 3. Shetty SS, Deepthi D, Harshitha S, Sonkusare S, Naik PB, Kumari NS, et al. Environmental pollutants and their effects on human health. Heliyon. 2023;9(9):e19496.
  • 4. Weber LWD, Boll M, Stampfl A. Hepatotoxicity and Mechanism of Action of Haloalkanes: Carbon Tetrachloride as a Toxicological Model. Crit Rev Toxicol. 2003;33(2):105-36. doi: 10.1080/713611034.
  • 5. Takahashi S, Takahashi T, Mizobuchi S, Matsumi M, Morita K, Miyazaki M, et al. Increased Cytotoxicity of Carbon Tetrachloride in a Human Hepatoma Cell Line Overexpressing Cytochrome P450 2E1. J Int Med Res. 2002;30(4):400-5. doi:10.1177/147323000203000406.
  • 6. Zangar RC, Benson JM, Burnett VL, Springer DL. Cytochrome P450 2E1 is the primary enzyme responsible for low-dose carbon tetrachloride metabolism in human liver microsomes. Chem Biol Interact. 2000;125(3):233-43. doi: 10.1016/s0009-2797(00)00149-6.
  • 7. Stashin AR, Fikse DJ, Orta AM, Briggs RP, Wheatley SM, Koons AL. You Dropped the Bomb on Me: A Case Series of Carbon Tetrachloride Toxicity. Cureus. 2023;20;15(4):e37879. doi: 10.7759/cureus.37879.
  • 8. Clemedson C, Peterson A, Walum E. A Combined in Ovo‐in Vitro System for Studies of Volatile Compounds on Brain Development: Differential Effects of Carbon Tetrachloride on Neurones and Astrocytes. Pharmacol Toxicol. 1989;64(1):94-9. doi:10.1111/j.1600-0773.1989.tb00608.x.
  • 9. Unsal V, Cicek M, Sabancilar İ. Toxicity of carbon tetrachloride, free radicals and role of antioxidants. Rev Environ Health. 2020;36(2):279-295. doi: 10.1515/reveh-2020-0048.
  • 10. Marchlewicz M, Michalska T, Wiszniewska B. Detection of lead-induced oxidative stress in the rat epididymis by chemiluminescence. Chemosphere. 2004;57(10):1553-62. doi: 10.1016/j.chemosphere.2004.08.102.
  • 11. Clemedson C, Romert L, Odland L, Varnbo I, Walum E. Biotransformation of carbon tetrachloride in cultured neurons and astrocytes. Toxicol In Vitro. 1994;8(2):145-52. doi: 10.1016/0887-2333(94)90177-5.
  • 12. Naseem M, Parvez S. Hesperidin restores experimentally induced neurotoxicity in Wistar rats. Toxicol Mech Methods. 2014;24(7):512-9. doi: 10.3109/15376516.2014.945108.
  • 13. Ismail AFM, Salem AAM, Eassawy MMT. Modulation of gamma-irradiation and carbon tetrachloride induced oxidative stress in the brain of female rats by flaxseed oil. J Photochem Photobiol B. 2016;161:91-9. doi:10.1016/j.jphotobiol.2016.04.031.
  • 14. Shal B, Khan A, Naveed M, Ali H, Seo EK, Choi H, et al. Neuroprotective effect of 25-Methoxyhispidol A against CCl4-induced behavioral alterations by targeting VEGF/BDNF and caspase-3 in mice. Life Sci. 2020;253:117684. doi: 10.1016/j.lfs.2020.117684.
  • 15. Gil MI, Tomás-Barberán FA, Hess-Pierce B, Holcroft DM, Kader AA. Antioxidant Activity of Pomegranate Juice and Its Relationship with Phenolic Composition and Processing. J Agric Food Chem. 2000;48(10):4581-9. doi:10.1021/jf000404a.
  • 16. Matthaiou CM, Goutzourelas N, Stagos D, Sarafoglou E, Jamurtas A, Koulocheri SD, et al. Pomegranate juice consumption increases GSH levels and reduces lipid and protein oxidation in human blood. Food ChemToxicol. 2014;73:1-6. doi: 10.1016/j.fct.2014.07.027.
  • 17. Derakhshan Z, Ferrante M, Tadi M, Ansari F, Heydari A, Hosseini MS, et al. Antioxidant activity and total phenolic content of ethanolic extract of pomegranate peels, juice and seeds. Food Chem Toxicol. 2018;114:108-111. doi: 10.1016/j.fct.2018.02.023.
  • 18. Braidy N, Selvaraju S, Essa MM, Vaishnav R, Al-Adawi S, Al-Asmi A, et al. Neuroprotective Effects of a Variety of Pomegranate Juice Extracts against MPTP-Induced Cytotoxicity and Oxidative Stress in Human Primary Neurons. Oxid Med Cell Longev. 2013;2013:685909. doi: 10.1155/2013/685909.
  • 19. Kujawska M, Jourdes M, Kurpik M, Szulc M, Szaefer H, Chmielarz P, et al. Neuroprotective Effects of Pomegranate Juice against Parkinson’s Disease and Presence of Ellagitannins-Derived Metabolite Urolithin A In the Brain. Int J Mol Sci. 2019;21(1):202. doi: 10.3390/ijms21010202.
  • 20. Fathy SM, El-Dash HA, Said NI. Neuroprotective effects of pomegranate (Punica granatum L.) juice and seed extract in paraquat-induced mouse model of Parkinson’s disease. BMC Complement Med Ther. 2021;21(1):130. doi: 10.1186/s12906-021-03298-y.
  • 21. Dharmajaya R, Sari DK. Malondialdehyde value as radical oxidative marker and endogenous antioxidant value analysis in brain tumor. Ann Med Surg (Lond). 2022;77:103231. doi: 10.1016/j.amsu.2021.103231.
  • 22. Iskusnykh IY, Zakharova AA, Pathak D. Glutathione in Brain Disorders and Aging. Molecules. 2022;27(1):324. doi: 10.3390/molecules27010324.
  • 23. Anadozie SO, Akinyemi JA, Adewale OB, Isitua CC. Prevention of short-term memory impairment by Bryophyllum pinnatum (Lam.) Oken and its effect on acetylcholinesterase changes in CCl 4 -induced neurotoxicity in rats. J Basic Clin Physiol Pharmacol. 2019;30(5). doi: 10.1515/jbcpp-2018-0161.
  • 24. Barker JE, Heales SJR, Cassidy A, Bolaños JP, Land JM, Clark JB. Depletion of brain glutathione results in a decrease of glutathione reductase activity; an enzyme susceptible to oxidative damage. Brain Res. 1996;716(1-2):118-22. doi: 10.1016/0006-8993(96)00003-0.
  • 25. Wang D, Zou L, Jin Q, Hou J, Ge G, Yang L. Human carboxylesterases: a comprehensive review. Acta Pharm Sin B. 2018;8(5):699-712. doi: 10.1016/j.apsb.2018.05.005.
  • 26. Annaç E, Uçkun M, Özkaya A, Yoloğlu E, Pekmez H, Bulmuş Ö, et al. The protective effects of pomegranate juice on lead acetate‐induced neurotoxicity in the male rat: A histomorphometric and biochemical study. J Food Biochem. 2022;46(4):e13881. doi: 10.1111/jfbc.13881.
  • 27. BRUCKNER J. Oral toxicity of carbon tetrachloride: Acute, subacute, and subchronic studies in rats. Fundam Appl Toxicol. 1986;6(1):16-34. doi: 10.1016/0272-0590(86)90260-5.
  • 28. Türk G, Sönmez M, Aydin M, Yüce A, Gür S, Yüksel M, et al. Effects of pomegranate juice consumption on sperm quality, spermatogenic cell density, antioxidant activity and testosterone level in male rats. Clin Nutr. 2008;27(2):289-96. doi: 10.1016/j.clnu.2007.12.006.
  • 29. Placer ZA, Cushman LL, Johnson BC. Estimation ofproduct of lipid peroxidation (malonyl dialdehyde) inbiochemical systems. Anal Biochem. 1966;16(2):359-64. doi: 10.1016/0003-2697(66)90167-9.
  • 30. Moron MS, Depierre JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta. 1979;582(1):67-78. doi: 10.1016/0304-4165(79)90289-7.
  • 31. Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7:88-95. doi: 10.1016/0006-2952(61)90145-9.
  • 32. Özmen M, Dominguez SE, Fairbrother A. Effects of Dietary Azinphos Methyl on Selected Plasma and Tissue Biomarkers of the Gray-Tailed Vole. Bull Environ Contam Toxicol. 1998;60(2):194-201. doi: 10.1007/s001289900610.
  • 33. Bradford M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal Biochem. 1976;72:248-54. doi: 10.1006/abio.1976.9999.
  • 34. Habig WH, Pabst MJ, Jakoby WB. Glutathione S-Transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249(22):7130-9.
  • 35. Carlberg I, Mannervik B. Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J Biol Chem. 1975;250(14):5475-80.
  • 36. Santhoshkumar P, Shivanandappa T. In vitro sequestration of two organophosphorus homologs by the rat liver. Chem Biol Interact. 1999;119-120:277-82. doi: 10.1016/s0009-2797(99)00037-x.
  • 37. Nousiainen U, Törrönen R. Differentiation of microsomal and cytosolic carboxylesterases in the rat liver by in vivo and in vitro inhibition. Gen Pharmacol. 1984;15(3):223-7. doi: 10.1016/0306-3623(84)90163-0.
  • 38. Atilgan FA, Atescelik M, Yilmaz M, Turk A, Gurger M, Goktekin MC, et al. Effects of N-acetyl cysteine on TRPM2 expression in kidney and liver tissues following malathion intoxication. Biotech Histochem. 2022;97(5):340-346. doi: 10.1080/10520295.2021.1986639.
  • 39. Lee KH, Cha M, Lee BH. Neuroprotective Effect of Antioxidants in the Brain. Int J Mol Sci. 2020;21(19):7152. doi: 10.3390/ijms21197152.
  • 40. Walczak-Nowicka ŁJ, Herbet M. Acetylcholinesterase Inhibitors in the Treatment of Neurodegenerative Diseases and the Role of Acetylcholinesterase in their Pathogenesis. Int J Mol Sci. 2021;22(17):9290. doi: 10.3390/ijms22179290.
  • 41. Andrés CMC, Pérez de la Lastra JM, Juan CA, Plou FJ, Pérez-Lebeña E. Antioxidant Metabolism Pathways in Vitamins, Polyphenols, and Selenium: Parallels and Divergences. Int J Mol Sci. 2024;25(5):2600. doi: 10.3390/ijms25052600.
  • 42. Goschorska M, Gutowska I, Baranowska-Bosiacka I, Piotrowska K, Metryka E, Safranow K, et al. Influence of Acetylcholinesterase Inhibitors Used in Alzheimer’s Disease Treatment on the Activity of Antioxidant Enzymes and the Concentration of Glutathione in THP-1 Macrophages under Fluoride-Induced Oxidative Stress. Int J Environ Res Public Health. 2018;16(1):10. doi: 10.3390/ijerph16010010.
  • 43. Lionetto MG, Caricato R, Calisi A, Giordano ME, Schettino T. Acetylcholinesterase as a Biomarker in Environmental and Occupational Medicine: New Insights and Future Perspectives. Biomed Res Int. 2013;2013:321213. doi: 10.1155/2013/321213.
  • 44. Frasco MF, Fournier D, Carvalho F, Guilhermino L. Do metals inhibit acetylcholinesterase (AChE)? Implementation of assay conditions for the use of AChE activity as a biomarker of metal toxicity. Biomarkers. 2005;10(5):360-75. doi: 10.1080/13547500500264660.
  • 45. Živančević K, Baralić K, Vukelić D, Marić Đ, Kotur-Stevuljević J, Ivanišević J, et al. Neurotoxic effects of low dose ranges of environmental metal mixture in a rat model: The benchmark approach. Environ Res. 2024;252(Pt 1):118680. doi: 10.1016/j.envres.2024.118680.
  • 46. Quesada-Vázquez S, Eseberri I, Les F, Pérez-Matute P, Herranz-López M, Atgié C, et al. Polyphenols and metabolism: from present knowledge to future challenges. J Physiol Biochem. 2024;80(3):603-625. doi: 10.1007/s13105-024-01046-7.
  • 47. Janion K, Strzelczyk JK, Walkiewicz KW, Biernacki K, Copija A, Szczepańska E, et al. Evaluation of Malondialdehyde Level, Total Oxidant/Antioxidant Status and Oxidative Stress Index in Colorectal Cancer Patients. Metabolites. 2022;12(11):1118. doi: 10.3390/metabo12111118.
  • 48. Khorsand M, Akmali M, Akhzari M. Efficacy of melatonin in restoring the antioxidant status in the lens of diabetic rats induced by streptozotocin. J Diabetes Metab Disord. 2019;18(2):543-549. doi: 10.1007/s40200-019-00445-8.
  • 49. Molavi Vasei F, Zamanian MY, Golmohammadi M, Mahmoodi M, Khademalhosseini M, Tavakoli T, et al. The Impact of Vitamin E Supplementation on Oxidative Stress, Cognitive Functions, and Aging‐ Related Gene Expression in Aged Mice. Food Sci Nutr. 2024;12(11):9834-9845. doi: 10.1002/fsn3.4548.
  • 50. Cione E, La Torre C, Cannataro R, Caroleo MC, Plastina P, Gallelli L. Quercetin, Epigallocatechin Gallate, Curcumin, and Resveratrol: From Dietary Sources to Human MicroRNA Modulation. Molecules. 2019;25(1):63. doi: 10.3390/molecules25010063.
  • 51. Zhang W, Gao J, Lu L, Bold T, Li X, Wang S, et al. Intracellular GSH/GST antioxidants system change as an earlier biomarker for toxicity evaluation of iron oxide nanoparticles. NanoImpact. 2021;23:100338. doi: 10.1016/j.impact.2021.100338.
  • 52. Zhao J, Agarwal R. Tissue distribution of silibinin, the major active constituent of silymarin, in mice and its association with enhancement of phase II enzymes: implications in cancer chemoprevention. Carcinogenesis. 1999;20(11):2101-8. doi: 10.1093/carcin/20.11.2101.
  • 53. Varlamova EG. Molecular Mechanisms of the Therapeutic Effect of Selenium Nanoparticles in Hepatocellular Carcinoma. Cells. 2024;13(13):1102. doi: 10.3390/cells13131102.
  • 54. Couto N, Wood J, Barber J. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic Biol Med. 2016;95:27-42. doi: 10.1016/j.freeradbiomed.2016.02.028.
  • 55. Tippairote T, Bjørklund G, Gasmi A, Semenova Y, Peana M, Chirumbolo S, et al. Combined Supplementation of Coenzyme Q10 and Other Nutrients in Specific Medical Conditions. Nutrients. 2022;14(20):4383. doi: 10.3390/nu14204383.
  • 56. Zembron-Lacny A, Slowinska-Lisowska M, Szygula Z, Witkowski K, Stefaniak T, Dziubek W. Assessment of the antioxidant effectiveness of alpha-lipoic acid in healthy men exposed to muscle-damaging exercise. J Physiol Pharmacol. 2009;60(2):139-43.
  • 57. Zavodnik LB, Zavodnik IB, Lapshina EA, Belonovskaya EB, Martinchik DI, Kravchuk RI, et al. Protective effects of melatonin against carbon tetrachloride hepatotoxicity in rats. Cell Biochem Funct. 2005;23(5):353-9. doi: 10.1002/cbf.1160.
  • 58. Elkhamesy A, Refaat M, Gouida MSO, Alrdahe SS, Youssef MM. Diminished CCl4 ‐induced hepatocellular carcinoma, oxidative stress, and apoptosis by coadministration of curcumin or selenium in mice. J Food Biochem. 2022;46(4):e13845. doi: 10.1111/jfbc.13845.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-09e3130f-4a5a-4a4a-a2e1-959d7a27d926
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.