PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 72 | 3 |
Tytuł artykułu

Photoacustic tomography can detect cerebral hemodynamic alterations in a neonatal rodent model of hypoxia-ischemia

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hypoxic-Ischemic Encephalopathy (HIE) is one of the most recognized causes of neurological deficits in children. Cerebral blood flow (CBF) reductions, as seen with HIE, resulting in neuronal injury have not been evaluated in real-time. Photoacoustic Tomography (PAT) is a form of optical imaging which can detect cerebral hemodynamic alterations in a non- invasive, non-ionizing fashion via changes in hemoglobin optical absorption. Further, this technology has the potential to capture cerebral blood volume (CBV) fluctuations and perhaps CBF changes in real-time. We hypothesized that PAT can detect a reduction in cerebral hemoglobin optical absorption, and therefore CBF, in a neonatal model of hypoxia-ischemia. To investigate, P7 rats underwent right carotid artery ligation and exposure to 8% oxygen for 60 minutes while imaged with PAT every 20 minutes. Cerebral hemodynamic alterations, as measured by mean optical absorption (MOA), were calculated as a change from baseline. Global and regional MOA was analyzed using a linear mixed model. Global MOA was reduced within the right hemisphere as compared to the left during hypoxia. Regional differences in MOA were detected between the left and right sides for the middle and posterior cortical regions. Injury was confirmed using immunohistochemistry. We conclude that a reduction in global and regional MOA, and hence CBF, could be identified by PAT in a neonatal rat model of HIE. This is the first study described in the literature utilizing a neonatal rat model of HIE to demonstrate in vivo alterations in cerebral hemodynamics in a non-invasive and near real-time fashion.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
72
Numer
3
Opis fizyczny
p.253-263,fig.,ref.
Twórcy
autor
  • Department of Pediatric, University of Florida, Gainesville and Jackonville, Florida, USA
autor
  • Department of Pediatric, University of Florida, Gainesville and Jackonville, Florida, USA
autor
  • Department of Biomedical Engineering, University of Florida, Gainesville and Jackonville, Florida, USA
autor
  • Department of Biomedical Engineering, University of Florida, Gainesville and Jackonville, Florida, USA
autor
  • Department of Neurosurgery, University of Florida, Gainesville and Jackonville, Florida, USA
autor
  • Department of Neurosurgery, University of Florida, Gainesville and Jackonville, Florida, USA
autor
  • Department of Statistic, University of Florida, Gainesville and Jackonville, Florida, USA
autor
  • Department of Pediatric, University of Florida, Gainesville and Jackonville, Florida, USA
Bibliografia
  • Greisen G (1992) Effect of cerebral blood flow and cerebro¬vascular autoregulation on the distribution, type and extent of cerebral injury. Brain Pathol 2: 223-228.
  • Hall P, Adami HO, Trichopoulos D, Pedersen NL, Lagiou P, Ekbom A, Ingvar M, Lundell M, Granath F (2004) Effect of low doses of ionising radiation in infancy on cognitive function in adulthood: Swedish population based cohort study. BMJ 328: 19.
  • Hebden JC, Gibson A, Yusof RM, Everdell N, Hillman EM, Delpy DT, Arridge SR, Austin T, Meek JH, Wyatt JS (2002) Three-dimensional optical tomography of the pre¬mature infant brain. Phys Med Biol 47: 4155-4166.
  • Ishihara M, Sato M, Kaneshiro N, Mitani G, Sato S, Mochida J, Kikuchi M (2006) Development of a diagnostic system for osteoarthritis using a photoacoustic measurement method. Lasers Surg Med 38: 249-255.
  • Jones MD Jr., Traystman RJ (1984) Cerebral oxygenation of the fetus, newborn, and adult. Semin Perinatol 8: 205¬216.
  • Ku G, Fornage BD, Jin X, Xu M, Hunt KK, Wang LV (2005) Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging. Technol Cancer Res Treat 4: 559-566.
  • Lassen NA (1959) Cerebral blood flow and oxygen con¬sumption in man. Physiol Rev 39: 183-238.
  • Levine S (1960) Anoxic-ischemic encephalopathy in rats. Am J Pathol 36: 1-17.
  • Minagawa-Kawai Y, Mori K, Hebden JC, Dupoux E (2008) Optical imaging of infants' neurocognitive development: recent advances and perspectives. Dev Neurobiol 68: 712-728.
  • Nuntnarumit P, Yang W, Bada-Ellzey HS (1999) Blood pres¬sure measurements in the newborn. Clin Perinatol 26: 981-996.
  • Pryds O, Greisen G, Lou H, Friis-Hansen B (1990) Vasoparalysis associated with brain damage in asphyxi¬ated term infants. J Pediatr 117: 119-125.
  • Rice JE, 3rd, Vannucci RC, Brierley JB (1981) The influ¬ence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 9: 131-141.
  • Rutherford MA, Pennock JM, Counsell SJ, Mercuri E, Cowan FM, Dubowitz LM, Edwards AD (1998) Abnormal magnetic resonance signal in the internal capsule predicts poor neurodevelopmental outcome in infants with hypox- ic-ischemic encephalopathy. Pediatrics 102: 323-328.
  • Seri I (2001) Circulatory support of the sick preterm infant. Semin Neonatol 6: 85-95.
  • Seri I, Evans J (2001) Controversies in the diagnosis and management of hypotension in the newborn infant. Curr Opin Pediatr 13: 116-123.
  • Shah S, Fernandez AR, Chirla D (2001) Role of brain SPECT in neonates with hypoxic ischemic encephalopa- thy and its correlation with neurodevelopmental outcome. Indian Pediatr 38: 705-713.
  • Stein EW, Maslov K, Wang LV (2009) Noninvasive, in vivo imaging of blood-oxygenation dynamics within the mouse brain using photoacoustic microscopy. J Biomed Opt 14: 020502.
  • Towfighi J, Yager JY, Housman C, Vannucci RC (1991) Neuropathology of remote hypoxic-ischemic damage in the immature rat. Acta Neuropathol 81: 578-587.
  • Tsuji M, Saul JP, du Plessis A, Eichenwald E, Sobh J, Crocker R, Volpe JJ (2000) Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants. Pediatrics 106: 625¬632.
  • van Wezel-Meijler G, Steggerda SJ, Leijser LM (2010) Cranial ultrasonography in neonates: role and limitations. Semin Perinatol 34: 28-38.
  • Vannucci RC, Lyons DT, Vasta F (1988) Regional cerebral blood flow during hypoxia-ischemia in immature rats. Stroke 19: 245-250.
  • Vannucci RC (1997) Hypoxia-ischemia: Clinical aspects. In: Neonatal-Perinatal Medicine IV (Fanaroff AA, Martin RJ, Eds). Mosby-Yearbook, Inc., Philadelphia, PA, p. 877-891.
  • Vannucci RC, Connor JR, Mauger DT, Palmer C, Smith MB, Towfighi J, Vannucci SJ (1999) Rat model of perinatal hypoxic-ischemic brain damage. J Neurosci Res 55: 158-163.
  • Vannucci RC, Vannucci SJ (2005) Perinatal hypoxic-isch- emic brain damage: evolution of an animal model. Dev Neurosci 27: 81-86.
  • Volpe JJ, Herscovitch P, Perlman JM, Kreusser KL, Raichle ME (1985) Positron emission tomography in the asphyx¬iated term newborn: parasagittal impairment of cerebral blood flow. Ann Neurol 17: 287-296.
  • Volpe J (2008) Neurology of the Newborn. Saunders, Philadelphia, PA.
  • Wang LV (2008) Prospects of photoacoustic tomography. Med Phys 35: 5758-5767.
  • Wang X, Chamberland DL, Xi G (2008) Noninvasive reflec¬tion mode photoacoustic imaging through infant skull toward imaging of neonatal brains. J Neurosci Methods 168: 412-421.
  • Wang X, Pang Y, Ku G, Xie X, Stoica G, Wang LV (2003) Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat Biotechnol 21: 803-806.
  • Xia YX, Sameshima H, Ikeda T, Higo T, Ikenoue T (2002) Cerebral blood flow distribution and hypoxic-ischemic brain damage in newborn rats. J Obstet Gynaecol Res 28: 320-326.
  • Yuan Z, Wu C, Zhao H, Jiang H (2005) Imaging of small nanoparticle-containing objects by finite-element-based photoacoustic tomography. Opt Lett 30: 3054-3056.
Uwagi
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-09c0effe-4fee-4e96-b6d8-b8008fdd513b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.