PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 3 |

Tytuł artykułu

Determining salinity and ion soil using satellite image processing

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Arid and semi-arid zones frequently present salinity problems in soils. The agriculture of the municipality of Ahome, Sinaloa has an agricultural region where its soils are characterized by problems of salinity and sodicity – conditions that reduce production. Salinity can be detected by implementing remote sensing techniques; there are ways to enhance the detection of satellite salinity through the use of diverse quantitative models, using the spectral signature of each of the components of the study area through algorithms named indices. For this study we used the normalized differential salinity index (NDSI) from a Landsat OLI image for the southern area of the city, which is related to the electrical conductivity (EC) of the soils (R = 0.90). At the same time, it is related to some anions and cations. As a result, it is possible to determine since the NDSI, the anion Cl– and Cations Na+, Ca++, and Mg++. We found a relationship between EC - Cl– (R = 0.94), EC - Na+ (R = 0.84), EC - Ca++ (R = 0.85), and EC-Mg++ (R = 0.86). The electrical conductivity in the field and laboratory, anions, cations, and NDSI index were filtered with the Kalman filter obtaining better fitter, eliminating dispersivity in the variable relations.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

3

Opis fizyczny

p.1549-1560,fig.,ref.

Twórcy

autor
  • Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Fuente de Poseidon y Angel Flores s/n, Jiquilpan, Los Mochis, Sinaloa, Mexico
  • Escuela de Ciencias Economicas y Administrativas, Universidad Autonoma de Sinaloa, San Joachín, Guasave, Sinaloa, Mexico
  • Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Fuente de Poseidon y Angel Flores s/n, Jiquilpan, Los Mochis, Sinaloa, Mexico
  • Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Fuente de Poseidon y Angel Flores s/n, Jiquilpan, Los Mochis, Sinaloa, Mexico
  • Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Fuente de Poseidon y Angel Flores s/n, Jiquilpan, Los Mochis, Sinaloa, Mexico
  • Centro de Investigacion Científica y de Educacion Superior de Ensenada, Baja California (CICESE), Ensenada, Mexico
autor
  • Centro de Investigacion Científica y de Educacion Superior de Ensenada, Baja California (CICESE), Ensenada, Mexico
  • Escuela de Ciencias Economicas y Administrativas, Universidad Autonoma de Sinaloa, San Joachín, Guasave, Sinaloa, Mexico
autor
  • Escuela de Biología, Universidad Autonoma de Sinaloa, Culiacan Sinaloa, Mexico

Bibliografia

  • 1. ASFAW E., SURYABHAGAVAN K.V., ARGAW M. Soil salinity modeling and mapping using remote sensing and GIS: The case of Wonji sugar cane irrigation farm, Ethiopia. Journal of the Saudi Society of Agricultural Sciences, 21 (May), 1, 2016.
  • 2. GORJI T., SERTEL E., TANIK A. Monitoring soil salinity via remote sensing technology under data scarce conditions: A case study from Turkey. Ecological Indicators, 74, 384, 2017.
  • 3. CEPEDA D.J. Soil Chemistry. Trillas. 2012 [In Spanish].
  • 4. DALIAKOPOULOS I.N., TSANIS I.K., KOUTROULIS A., KOURGIALAS N.N., VAROUCHAKIS A.E., KARATZAS G.P., RITSEMA C.J. The threat of soil salinity: A European scale review. Science of the Total Environment, 573, 727, 2016.
  • 5. PORTA-CASANELLAS J. Edafologia-use and protection of soils. (S.A. M.P. Libros, Ed.) (3rd ed.), 2014 [In Spanish].
  • 6. DING J., YU D. Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan-Kuqa Oasis, China, using remote sensing and electromagnetic induction instruments. Geoderma, 235-236, 316, 2014.
  • 7. SCUDIERO E., SKAGGS T.H., CORWIN D.L. Comparative regional-scale soil salinity assessment with near-ground apparent electrical conductivity and remote sensing canopy reflectance. Ecological Indicators, 70, 276, 2016.
  • 8. ALDABAA A.A.A., WEINDORF D.C., CHAKRABORTY S., SHARMA A., LI B. Combination of proximal and remote sensing methods for rapid soil salinity quantification. Geoderma, 239, 34, 2015.
  • 9. METTERNICHT G.I., ZINCK J.A. Remote sensing of soil salinity: Potentials and constraints. Remote Sensing of Environment. 2003.
  • 10. FARIFTEH J., VAN DER MEER F., VAN DER MEIJDE M., ATZBERGER C. Spectral characteristics of salt-affected soils: A laboratory experiment. Geoderma, 145 (3-4), 196, 2008.
  • 11. BLASCH G., SPENGLER D., HOHMANN C., NEUMANN C., ITZEROTT S., KAUFMANN H. Multitemporal soil pattern analysis with multispectral remote sensing data at the field-scale. Computers and Electronics in Agriculture, 113, 1, 2015.
  • 12. OPEKAR F., TŮMA P. Dual-channel capillary electrophoresis for simultaneous determination of cations and anions. Journal of Chromatography A, 1446, 158, 2016.
  • 13. ROMERO F.S. Satellite remote sensing and environmental protection systems Introduction. Revista AquaTIC, 24, 13. Retrieved from http://www.revistaaquatic.com/aquatic/art.asp?t=p&c=196, 2006 [In Spanish].
  • 14. WU W., MHAIMEED A.S., AL-SHAFIE W.M., ZIADAT, F., DHEHIBI B., NANGIA V., DE PAUW E. Mapping soil salinity changes using remote sensing in Central Iraq. Geoderma Regional, 2-3, 21, 2014.
  • 15. ZEWDU S., SURYABHAGAVAN K.V., BALAKRISHNAN M. Geo-spatial approach for soil salinity mapping in Sego Irrigation Farm, South Ethiopia. Journal of the Saudi Society of Agricultural Sciences, 16 (1), 16, 2017.
  • 16. FLORES R.S., WILLEMS B.L., OCOLA L.C., FERNÁNDEZ R., PÉREZ J.C. Identification of land degraded by soil salinity in sugarcane crops using satellite images. Revista de Investigación de Física, 19, 0, 2016 [In Spanish].
  • 17. POENARU V., BADEA A., CIMPEANU S.M., IRIMESCU A. Multi-temporal Multi-spectral and Radar Remote Sensing for Agricultural Monitoring in the Braila Plain. Agriculture and Agricultural Science Procedia, 6, 506, 2015.
  • 18. SHRESTHA R.P. Relating soil electrical conductivity to remote sensing and other soil properties for assessing soil salinity in northeast Thailand. Land Degradation and Development, 17 (6), 677, 2006.
  • 19. KHAN N.M., RASTOSKUEV V.V, SATO Y., SHIOZAWA S. Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators. In Agricultural Water Management 77, 96, 2005.
  • 20. LAISKHANOV S.U., OTAROV A., SAVIN I.Y., TANIRBERGENOV S.I., MAMUTOV Z.U., DUISEKOV S.N., ZHOGOLEV A. Dynamics of soil salinity in irrigation areas in South Kazakhstan. Polish Journal of Environmental Studies, 25 (6), 2469, 2016.
  • 21. DEHNI A., LOUNIS M. Remote sensing techniques for salt affected soil mapping: Application to the Oran region of Algeria. In Procedia Engineering. 33, 188, 2012.
  • 22. JAYALAKSHMI S., VELAPPAN E. Assessment of Water Quality Index in the St. Thomas Mount Block Using GIS and Remote Sensing. Polish Journal of Environmental Studies, 24 (4), 1611, 2015.
  • 23. MORA J.L., HERRERO J., WEINDORF D.C. Multivariate analysis of soil salination-desalination in a semi-arid irrigated district of Spain. Geoderma, 291, 1, 2017.
  • 24. INEGI. Statistical and geographical yearbook of Mexico 2016. National Institute of Statistics and Geography, 2016 [In Spanish].
  • 25. IMPLAM. Atlas of Natural Risks of the city of Los Mochis 2011. Ahome, Sinaloa, México. 109, 2012 [In Spanish].
  • 26. SAGARPA (Ministry of Agriculture, Livestock, Rural Development, Fisheries and Food). State Agroeconomic Indicators. Sinaloa, Méxco. 6, 2011 [In Spanish]
  • 27. United States geological website.earthexplorer.usgs.gov/.
  • 28. JOVANOVIĆ M.M., MILANOVIĆ M.M. Normalized difference vegetation index (NDVI) as the basis for local forest management. Example of the municipality of Topola, Serbia. Polish J. Environ. Stud. 24, 529, 2016.
  • 29. ŽIVOTIĆ L., PEROVIĆ V., JARAMAZ D., DORDEVIĆ A., PETROVIĆ R., TODOROVIĆ M. Application of USLE, GIS, and remote sensing in the assessment of soil erosion rates in southeastern serbia. Polish J. Environ. Stud., 21, 1929, 2012.
  • 30. SCUDIERO E., TEATINI P., CORWIN D.L., DEIANA R., BERTI A., MORARI F. Delineation of site-specific management units in a saline region at the Venice Lagoon margin, Italy, using soil reflectance and apparent electrical conductivity. Comput. Electron. Agric. 99, 54, 2013.
  • 31. FAN X., LIU Y., TAO J., WENG Y. Soil salinity retrieval from advanced multi-spectral sensor with partial least square regression. Remote Sens. 7, 488, 2015.
  • 32. SCUDIERO E., SKAGGS T.H., CORWIN D.L. Regional scale soil salinity evaluation using Landsat 7, Western San Joaquin Valley, California, USA. Geoderma Reg., 2, 82, 2014.
  • 33. CIHLAR J. Land cover mapping of large areas from satellites: status and research. Int. J. Remote Sens., 21, 1093, 2000.
  • 34. FASSBENDER H.W., BORNEMISZA E. Soil Chemistry: with emphasis on Latin American soils; Costa Rica, 1994 [In Spanish].
  • 35. SEMARNAT. Official Mexican Standard Nom-021-Semarnat-2000. It establishes the specifications of fertility, salinity and classification of soils, study, sampling and analysis; México. 85, 2002 [In Spanish].
  • 36. BOUYOUCOS G.J. Hydrometer Method Improved for Making Particle Size Analyses of Soils. Agron. J., 54, 464, 1962.
  • 37. KALMAN R.E. A New Approach to Linear Filtering and Prediction Problems. Journal of Basic Engineering. 1960.
  • 38. KIM P. Kalman Filter for Begineers with MATLAB Examples. 2010.
  • 39. GREWAL M.S., ANDREWS A.P. Applications of Kalman Filtering in Aerospace 1960 to the Present. IEEE Control Systems, 30 (3), 69, 2010.
  • 40. BEKIR E. Introduction to modern navigation systems. Recherche. WORLD SCIENTIFIC. 2007.
  • 41. NAVARRO-GARCÍA G., NAVARRO-GARCÍA S. Agricultural chemistry Essential soil and nutrient chemistry. (S.A.M.-P. LIBROS, Ed.). España. 2013 [In Spanish].
  • 42. KARADAĞ S., EREN E., ÇETINKAYA E., ÖZEN S., DEVECI S. Optimization of sodium extraction from soil by using a central composite design (CCD) and determination of soil sodium content by ion selective electrodes. Eurasian J Soil Sci, 5 (2), 1, 2016.
  • 43. STOICA M.E., AVRAM L., ONUTU I., BARBULESCU A., PANAITESCU C. Time Behaviour of Hydrocarbon Pollutants in Soils Polluted with Oil and Salt Water. REV. CHIM.(Bucharest), 67 (2), 357, Retrieved from http://www.revistadechimie.ro 2016.
  • 44. RICHARDS L. Diagnosis and Improvement of Saline and Alkali Soils.: Soil Science. Soil Science, 78 (2), 154, 1954.
  • 45. LHISSOU R., EL A., CHOKMANI K. Mapping soil salinity in irrigated land using optical remote sensing data. Eurasian journal of science, 3 (2), 82, 2014.
  • 46. İRİK H.A. Develi Ovası Toprak Tuzluluğunun Belirlenmesi ve Coğrafi Bilgi Sistemleri Kullanılarak Haritalanması. (Doctoral dissertation, Selçuk Üniversitesi Fen Bilimleri Enstitüsü). Retrieved from http://acikerisim.selcuk.edu. tr:8080/xmlui/bitstream/handle/123456789/984/335304.pdf?sequence=1 2013.
  • 47. HULISZ P., PIERNIK A. Soils affected by soda industry in Inowrocław. Technogenic soils of poland, 125. Retrieved from http://www.academia.edu/16807997/Soils_affected_by_soda_industry_in_Inowrocław 2013.
  • 48. SIMON D. Optimal state estimation: Kalman, H infinity, and nonlinear approaches. Wiley-Interscience, 2006.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-09b53663-2b94-4f7e-938c-566b51564646
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.