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Estimation risk taking into consideration the effect  
of forecasting scheme: robust inference about VaR1 

Marta Małeckaa 

Abstract. The paper addresses the issue of estimation risk in VaR testing. The occurrence of 
estimation risk (also called parameter uncertainty) implies that the observed VaR violation 
process may not fulfil the standard requirements that underpin the testing framework. As  
a result, VaR tests may reject correct VaR models due to estimation errors committed when 
predicting the VaR. The paper examines the robustness of VaR tests to estimation risk. The 
research is based on an observation indicating that certain elements of a forecasting scheme 
have a significant influence on estimation risk. Thus, the article extends the previous studies to 
include several more realistic forecasting schemes than those based solely on a fixed window. 
 The aim of the research is twofold: firstly, to find methods of mitigating the negative impact 
of estimation risk on VaR tests, and secondly, to provide a comprehensive comparison of VaR 
testing methods with reference to the issue of estimation risk. The conducted analyses 
demonstrate that a proper adjustment of the forecasting scheme yields better results in terms 
of the accuracy of the tests than correcting estimation errors by means of the subsampling 
technique. 
Keywords: VaR tests, estimation risk, parameter uncertainty 
JEL: C12, C52, C53, G17 

Ryzyko estymacyjne uwzględniające  
schemat prognozowania – wnioskowanie o VaR 

za pomocą metod odpornych 
Streszczenie. Artykuł dotyczy problemu ryzyka estymacyjnego przy testowaniu VaR. Wystę-
powanie ryzyka estymacyjnego (zwanego również niepewnością parametrów) oznacza, że 
obserwowany proces przekroczeń VaR może nie spełniać standardowych wymogów określają-
cych ramy testowe. W konsekwencji testy VaR mogą odrzucać prawidłowe modele VaR 
ze względu na błędy estymacji popełnione podczas wyznaczania prognoz VaR. W badaniu 
omawianym w artykule oceniana jest odporność testów VaR na ryzyko estymacyjne. U podstaw 
badania leży spostrzeżenie, że ryzyko estymacyjne w istotny sposób zależy od elementów 
schematu prognozowania. Z tego powodu w badaniu uwzględniono schematy prognozowania 
bardziej realistyczne niż schemat oparty na ustalonym oknie, co stanowi rozszerzenie w stosun-
ku do wcześniej prowadzonych badań. 
 Cel badania jest dwojaki: znalezienie metod, które pozwalałyby zniwelować negatywny 
wpływ ryzyka estymacji na testy VaR, oraz kompleksowe porównanie metod testowania VaR  

1 Artykuł został opracowany na podstawie referatu wygłoszonego na konferencji Multivariate Statistical 
Analysis MSA 2021, która odbyła się w dniach 8–10 listopada 2021 r. w Łodzi. / The article is based on  
a paper delivered at the Multivariate Statistical Analysis MSA 2021 conference, held on 8–10 November 
2021 in Łódź. 
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w odniesieniu do problemu ryzyka estymacyjnego. Przeprowadzone a nalizy wskazują m.in. na 
to, że odpowiednie dostosowanie schematu prognozowania daje lepsze wyniki pod względem 
dokładności testów niż korygowanie błędów estymacji techniką podpróbkowania. 
Słowa kluczowe: testy VaR, ryzyko estymacyjne, niepewność parametrów 

1. Introduction

According to the Basel III and Basel IV accords,2 the current global banking 
regulations recommend including VaR (Value-at-Risk) tests in banks’ internal risk 
management systems. As a result, the VaR testing framework continues to be an 
important issue discussed in the financial and statistical literature. Recent studies on 
this subject have revealed a new methodological problem – the inaccuracy of testing 
methods due to estimation risk. For example, Escanciano and Olmo (2010) found 
that estimation risk changes the size of VaR tests. The size, together with the power, 
are two fundamental properties of a statistical test. They ensure that proper models 
are not overrejected (i.e. rejected more often than indicated by the chosen 
significance) and incorrect models are efficiently detected.  
 The influence of estimation risk on the size of VaR tests results from distortions of 
the VaR violation process, underpinning the backtesting procedures. These distortions 
occur because the violation process is based on the estimated, not the actual VaR. On 
the other hand, test statistic distributions typically rely on the violation process 
based on the actual VaR. As a consequence of this inconsistency, the VaR models 
may be rejected not only due to their incorrectness, but also as a result of estimation 
errors inherent in these models. Intuitively, the scale of estimation risk heavily 
depends on the forecasting scheme applied to produce VaR forecasts. The components 
of these forecasting schemes, such as the window choice or frequency of parameter 
correction, may potentially reduce the estimation errors and their negative impact 
on subsequent statistical inference. This issue, however, has not yet been studied. 
The existing proposals as to how to deal with the problem of size distortions caused 
by estimation risk (Escanciano & Olmo, 2010, 2011) do not investigate forecasting 
schemes. Instead, they are based on a fixed forecasting scheme and suggest solving 
this problem by using resampled distributions. According to these proposals, 
resampled distributions should replace asymptotic distributions. They should be 
obtained in a way that takes into account estimation risk. Our approach to this 
problem does not resort to resampling, but focuses on forecasting schemes instead. 
 In order to overcome the negative impact of estimation risk, we study this 
problem in the context of various realistic forecasting schemes. We design a Monte 
Carlo (MC) study that includes the rolling and recursive scheme along with the fixed 
one. This implies the need to carry out nested simulations, which substantially 

2 These accords contain supervisory recommendations issued by the Basel Committee on Banking 
Supervision (BCBS), which is the international committee setting prudential regulations of banks. It has  
45 members including central banks and bank supervisors from 28 jurisdictions. 
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increase the computational demands of the study; nevertheless it is essential for 
drawing practical conclusions. We demonstrate that when estimation risk occurs, 
the careful selection of the forecasting scheme is of particular importance, since it 
has critical influence on the properties of the test. The results of our research lead to 
different conclusions than those presented in previous studies, as we provide 
evidence that adjusting the forecasting scheme yields better results in terms of test 
accuracy than correcting the estimation error by means of resampling techniques. 
Thus, we argue that the tests may be effectively applied with the use of asymptotic 
distributions instead of time-consuming and computationally-intensive simulation 
methods. Our proposal, however, should involve performing parameter corrections 
in VaR models at a suitable frequency. These conclusions are of great practical 
importance considering the supervisory recommendation to incorporate VaR tests 
in the internal procedures of banks. 
 Our approach is also novel because it encompasses VaR tests belonging to various 
classes3 in one study. By doing so, it expands the range of the earlier comparisons of 
VaR testing methods provided by Berkowitz et al. (2011) and Pajhede (2017),4 who 
did not address the problem of estimation risk. Our study examines the estimation 
risk effects for VaR tests belonging to six distinct classes. The first class encompasses 
unconditional coverage tests, represented by the pioneering procedure by Kupiec 
(1995). This test is important to the banking industry, as it establishes a procedure 
which underpins international regulatory rules (BCBS, 2017). The remaining five 
distinct classes of conditional coverage tests are: the Markovian, correlation-based, 
regression-based, duration-based and spectral tests. In the first group of the above-
mentioned tests, the early Markov-chain Christoffersen’s one was the leading 
reference from 1998 until 2017, when it was generalised by Pajhede (2017). Our 
study, therefore, is based on the generalised Pajhede version of this test. Out of the 
group of the correlation-based procedures, we focus on the test of the Ljung-Box-
type, which draws directly upon the autocorrelation function of violations. This 
approach is particularly important, as, since Berkowitz et al. (2011) proposed using it 
for the evaluation of VaR models, it has been commonly treated as a benchmark in 
empirical studies. Out of the group of regression-based VaR tests, we chose the 
binary-choice procedure developed by Dumitrescu et al. (2012), who generalised and 
extended the early test by Engle and Manganelli (2004). To represent the class of the 
duration-based VaR tests, we selected the geometric-VaR test by Pelletier and Wei 
(2016). This method generalises the geometric approach proposed by Christoffersen 

3 We limit the scope of our study to univariate VaR tests. Previous research also proposed to employ the 
multivariate approach, i.e. to use multiple VaR levels (Colletaz et al., 2013; Gordy & McNeil, 2018; Hurlin 
& Tokpavi, 2006; Kratz et al., 2018; Leccadito et al., 2014; Wied et al., 2016) as a natural extension to these 
methods. 

4 The recent overview of VaR testing methods provided by Pajhede (2017) encompassed the Markov-chain 
class tests, autocorrelation tests, regression-based tests and duration-based tests; however, neither did it 
include the generalisation of the early regression-based test of Dumitrescu et al. (2012) nor the 
generalisation of the duration-based test of Pelletier and Wei (2016). It also did not include any of the 
spectral methods. 
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and Pelletier (2004) and follows a number of other VaR testing procedures related to 
the geometric distribution (Berkowitz et al., 2011; Candelon et al., 2011; Engle 
& Russel, 1998; Haas, 2005; Krämer & Wied, 2015; Ziggel et al., 2014). The spectral 
methods, following research by Małecka (2016), are represented in our study by the 
Anderson-Darling VaR test, which draws upon the spectral approach proposed by 
Berkowitz et al. (2011). 
 The aim of our study is twofold: firstly, to find methods of mitigating the negative 
impact of the estimation risk on VaR tests, and secondly, to provide a com-
prehensive comparison of VaR testing methods with reference to the issue of 
estimation risk. The key element of the study, which is an extension of previous 
research on estimation risk in VaR tests, is the inclusion of various realistic 
forecasting schemes. 

2. Literature review

The notion of estimation risk in the VaR context (also called the model risk) was 
defined by Escanciano and Olmo (2010). Prior to their work, studies on testing VaR 
centred around establishing criteria for distinguishing correct VaR models and 
proposals of how to verify these criteria. The main achievements in defining these 
economically relevant, testable criteria are attributed to Kupiec (1995), who 
proposed the verification of the VaR violation probability, and Christoffersen (1998), 
who argued that the probability of violating VaR should not only coincide with the 
chosen VaR coverage level (unconditional coverage criterion – VaR level) but also be 
constant in time (conditional coverage criterion). The criteria put forward by Kupiec 
and Christoffersen were accompanied by proposals of tests embedded in the 
likelihood ratio and first-order Markov-chain framework. These pioneering tests 
were followed by numerous other proposals of how to verify the unconditional 
coverage and independence criteria. Among them, there were proposals to use 
standard approaches like the correlation-based Ljung-Box test or the regression-
based tests developed by  Dumitrescu et al. (2012) and Engle and Manganelli (2004). 
The Markov-chain approach with higher-order dependencies was advocated by 
Pajhede (2017). A large group of the methods proposed as the follow-up to the 
pioneering tests mentioned before can be classified as duration-based tests. They use 
the transformation of VaR violations into durations and include tests proposed by 
Berkowitz et al. (2011), Candelon et al. (2011), Christoffersen and Pelletier (2004), 
Engle and Russel (1998), Haas (2005), Krämer and Wied (2015), Pelletier and Wei 
(2016) and Ziggel et al. (2014).  
 A different perspective was adopted towards spectral tests, which are based on the 
Fourier transformation of the autocorrelation function. Such an approach was used 
to test VaR by Berkowitz et al. (2011) and Gordy and McNeil (2018). An important 
development of these methods were multi-level and multivariate tests by Berkowitz 
(2001), Colletaz et al. (2013), Hurlin and Tokpavi (2006), Kratz et al. (2018), 
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Leccadito et al. (2014) and Wied et al. (2016). These competing VaR testing 
procedures were assessed on the basis of two fundamental statistical properties – the 
size and the power, which is the standard convention. 
 Very few papers have taken into account the problem of size distortions caused by 
estimation risk reported by Escanciano and Olmo (2010). The suggestions of how to 
handle this problem evolved around simulation methods based on resampling, as 
initiated by the study of Escanciano and Olmo (2011). They suggested simulation 
methods are ‘natural simpler alternatives’ to the asymptotic theory. The authors 
argued that asymptotic distributions incorporating estimation risk for VaR tests 
encounter technical problems which could be overcome through robust resampling 
techniques: the block bootstrap and subsampling. According to their research, these 
techniques may be used to approximate the actual sampling distributions of VaR test 
statistics. Their study showed that resampled distributions have an advantage over 
theoretical ones; however, the research was limited to the assumptions of the fixed 
forecasting scheme only. Since then, several novel proposals of tests have been 
presented with regard to estimation risk. Candelon et al. (2011) investigated the 
influence of estimation risk on their GMM-based VaR test and the possibility of 
reducing it by implementing subsampling. Dumitrescu et al. (2012) included the 
bootstrapping technique instead of subsampling as a remedy to the problem of 
estimation risk occurring in the dynamic-binary-choice VaR test. Pelletier and Wei 
(2016), who recently proposed an extension to the geometric duration-based VaR 
test, indicated that the issue of estimation risk should be subject to further studies. 
The general conclusion from these studies is that the effects of estimation risk 
drastically decrease the accuracy of tests (where accuracy is understood as a test size 
compliant with the selected significance level). The subsampling and the block-
bootstrap methods reduce this negative influence. However, even when corrected 
with the use of these methods, the true test size is clearly distinct from the chosen 
significance level. 
 The studies above employed subsampling or block-bootstrapping as a means to 
addressing the problem of estimation risk, as recommended by Escanciano and 
Olmo (2011). That research was based on the fixed forecasting scheme. The fixed 
forecasting scheme assumes that parameters are estimated only once from a fixed 
number of initial observations. We broaden the previous studies by waiving this 
assumption and including several commonly used forecasting schemes. We show 
that the proper adjustment of the analysed components produces better effects in 
dealing with estimation risk than the previously proposed methods. 

3. Estimation errors in VaR tests

The criteria developed for backtesting VaR models are based on the properties of the 
violation process, which compares the forecasted VaR with the realised returns. To 
formally define these criteria, let us denote 𝑅𝑅𝑡𝑡 as the continuous return from the 
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portfolio at time 𝑡𝑡, Ω𝑡𝑡 is the set of all information at time 𝑡𝑡, and ℱ𝑡𝑡 defines the  
𝜎𝜎-algebra generated by the subsets of Ω𝑡𝑡. The 𝑝𝑝%-VaR 𝑞𝑞𝑝𝑝(𝑅𝑅𝑡𝑡) is the conditional  
𝑝𝑝-quantile of 𝑅𝑅𝑡𝑡, i.e. ℙ(𝑅𝑅𝑡𝑡 < 𝑞𝑞𝑝𝑝(𝑅𝑅𝑡𝑡)|ℱ𝑡𝑡) = 𝑝𝑝. Let us assume that VaR forecasts are 
produced from the parametric model ℳ = {𝑉𝑉𝑉𝑉𝑅𝑅𝑡𝑡|𝑡𝑡−1,𝑝𝑝(𝜃𝜃):𝜃𝜃 ∈ Θ ⊂ ℝ𝑛𝑛}. The 
violation process is defined by: 
 

 𝐼𝐼𝑡𝑡,𝜃𝜃(𝑝𝑝) = 𝕀𝕀{𝑅𝑅𝑡𝑡 < 𝑉𝑉𝑉𝑉𝑅𝑅𝑡𝑡|𝑡𝑡−1,𝑝𝑝(𝜃𝜃)}, (1) 
 
where 𝕀𝕀𝐴𝐴(𝑥𝑥) = 1 if 𝑥𝑥 ∈ 𝐴𝐴, and 𝕀𝕀𝐴𝐴(𝑥𝑥) = 0 if 𝑥𝑥 ∉ 𝐴𝐴. 
 
 Equation (1) clearly demonstrates that the violation process and its properties 
which give rise to the VaR testing criteria are heavily dependent on parameter  
vector 𝜃𝜃. The nuisance parameters in 𝜃𝜃 introduce estimation risk to the backtesting 
framework, which tends to be neglected in standard backtesting procedures and thus 
requires verification. As noted by Escanciano and Olmo (2010), these procedures are 
typically based on the simplifying assumption that such 𝜃𝜃⋆ ∈ Θ exists that 
𝑉𝑉𝑉𝑉𝑅𝑅𝑡𝑡|𝑡𝑡−1,𝑝𝑝(𝜃𝜃⋆) = 𝑞𝑞𝑝𝑝(𝑅𝑅𝑡𝑡). Moreover, it is usually assumed that 𝜃𝜃⋆ is known. These 
assumptions may be jointly written as follows: 
 

 𝑉𝑉𝑉𝑉𝑅𝑅𝑡𝑡|𝑡𝑡−1,𝑝𝑝(𝜃𝜃) = 𝑉𝑉𝑉𝑉𝑅𝑅𝑡𝑡|𝑡𝑡−1,𝑝𝑝(𝜃𝜃⋆) = 𝑞𝑞𝑝𝑝(𝑅𝑅𝑡𝑡). (2) 
 
 According to (2) and provided that the VaR model is correct, the underlying 
violation process shown in (1) reduces to: 
 

 𝐼𝐼𝑡𝑡(𝑝𝑝) = 𝕀𝕀{𝑅𝑅𝑡𝑡 < 𝑞𝑞𝑝𝑝(𝑅𝑅𝑡𝑡)}. (3) 
 
 Based on the process described in (3), the VaR testing criteria are formulated as 
 

 ℙ(𝐼𝐼𝑡𝑡,𝜃𝜃(𝑝𝑝) = 1) = 𝑝𝑝 (4) 
 
and 
 

 ℙ(𝐼𝐼𝑡𝑡,𝜃𝜃(𝑝𝑝) = 1|ℱ𝑡𝑡−1) = ℙ(𝐼𝐼𝑡𝑡,𝜃𝜃(𝑝𝑝) = 1), (5) 
 

which are called the unconditional coverage and independence criterion, 
respectively. Jointly, these criteria require the conditional probability of violation to 
be constant and equal to 𝑝𝑝, i.e. 
 

 ℙ(𝐼𝐼𝑡𝑡,𝜃𝜃(𝑝𝑝) = 1|ℱ𝑡𝑡−1) = 𝑝𝑝, (6) 
 

which is called the conditional coverage criterion. 
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 Conditions (4)–(6) hold true only when (3) is the true violation process.  
In a realistic setting, however, process (3) is unobservable, while the observed VaR 
violations are the realisations of (1). These realisations correspond to the  
out-of-sample VaR forecasts for the observed return series. Assuming series of  
a length of 𝑇𝑇, i.e. {𝑅𝑅1, … ,𝑅𝑅𝑇𝑇}, the beginning 𝑅𝑅 observations are used only to estimate 
model ℳ and produce forecasts for the remaining period. The forecasted VaR  
series {𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅+1|𝑅𝑅,𝑝𝑝(𝜃𝜃), … ,𝑉𝑉𝑉𝑉𝑅𝑅𝑇𝑇|𝑇𝑇−1,𝑝𝑝(𝜃𝜃)} of the 𝑃𝑃 = 𝑇𝑇 − 𝑅𝑅 length, compared with 
the 𝑃𝑃 out-of-sample returns {𝑅𝑅𝑅𝑅+1, … ,𝑅𝑅𝑇𝑇}, forms observed violation series 
{𝐼𝐼𝑅𝑅+1,𝜃𝜃(𝑝𝑝), … , 𝐼𝐼𝑇𝑇,𝜃𝜃(𝑝𝑝)}, where criteria (4)–(6) do not hold true. However, following 
the standard convention, the asymptotic distributions of the VaR test statistics are 
based on the assumption that this violation sample is the series of realisations of (3) 
instead of (1). This may cause the results of the backtesting to be misleading. Also, 
the typical studies that evaluate the fundamental statistical properties of test statistics 
– the size and the power – are based on simulations that erroneously assume that, 
under the correct model, (3) is the violation process. 
 Two ways of dealing with the problem of estimation risk were proposed by 
Escanciano and Olmo (2011). The first method involved the development of an 
asymptotic theory that incorporated the influence of the estimation risk on the 
evaluation of risk models. Based on this theory, the correct asymptotic distributions 
of two VaR tests were derived: one dedicated to the unconditional coverage and the 
other to the conditional coverage hypothesis. However, the authors noted that such 
distributions may be difficult to derive analytically for other available testing 
procedures. Moreover, the quick inflow of new, generalised and extended tests 
makes such an analytical approach infeasible. In order to address these issues, 
Escanciano and Olmo suggested that the problem of estimation risk be resolved by 
the employment of simulation methods. They proposed two resampling techniques: 
subsampling and the block bootstrap to approximate the true sampling distribution 
of the test statistics. 
 The idea of the subsampling approach consists in using a subsampling 
approximation of the actual statistic distribution. This approximation is formed in  
a way that mimics the actual processes of estimating, forecasting VaR and testing. 
The approximate distribution is based on values of the test statistic computed on 
smaller subsets of data – subsamples. The 𝑠𝑠-th subsample from return data 
{𝑅𝑅1,𝑅𝑅2, … ,𝑅𝑅𝑇𝑇} is defined as {𝑅𝑅𝑠𝑠,𝑅𝑅𝑠𝑠+1, … ,𝑅𝑅𝑠𝑠+𝑢𝑢−1}, where 𝑠𝑠 ∈ {1, … ,𝑇𝑇 − 𝑢𝑢 + 1}  
and 𝑢𝑢 is the subsample size. Then these subsamples are divided into two parts that 
correspond to the division of the initial sample into the in-sample part of length 𝑅𝑅 
and the out-of-sample part of length 𝑃𝑃. Consequently, each subsample has the  
in-sample part of size 𝑅𝑅𝑢𝑢 and the out-of-sample part of size 𝑃𝑃𝑢𝑢, where 𝑃𝑃𝑢𝑢

𝑅𝑅𝑢𝑢
= 𝑃𝑃

𝑅𝑅
. The 
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in-sample parts are used for estimating model ℳ and the out-of-sample parts to 
compute the realisations of the test statistic. This technique was adopted by 
Candelon et al. (2011), who studied the effects of the estimation risk on their GMM 
VaR tests. 
 As regards the bootstrap approach, the sampling distribution of the test statistic 
derives from estimating model ℳ on the basis of resamples of size 𝑅𝑅 drawn with the 
replacement from the standardised residual series. These residuals are obtained with 
the use of the parameter estimates from the in-sample parts {𝑅𝑅1,𝑅𝑅2, … ,𝑅𝑅𝑅𝑅}. 
Following the resampling phase, the residuals are transformed into bootstrap 
samples {𝑅𝑅1𝐵𝐵,𝑅𝑅2𝐵𝐵, … ,𝑅𝑅𝑅𝑅𝐵𝐵}, which produce bootstrap parameter estimates and out-of-
sample bootstrap VaR forecasts. In effect, a new violation series is formed and used 
for testing. A sufficient number of repetitions yields series of realisations of the test 
statistic, which approximates its distribution. Such a technique was applied in the 
study by Dumitrescu et al. (2012), where the dynamic binary choice VaR test was 
developed. 
 The studies by Candelon et al. (2011) and Dumitrescu et at. (2012) led to two 
main conclusions: test accuracy drastically deteriorates when estimation errors 
occur, and resampling methods reduce the effects of the estimation errors. However, 
even corrected with the help of these methods, the true test size was clearly distinct 
from the chosen significance level. An important limitation to these studies from the 
practical point of view was the simplifying assumption that VaR forecasts were 
obtained from the fixed forecasting scheme. This scheme takes for granted that 
parameters are estimated only once from a fixed number of beginning observations. 
We ignore this assumption and investigate the influence of estimation errors under 
several commonly used forecasting schemes. 
 The forecasting schemes we analyse include three main types: fixed, rolling and 
recursive. While the fixed scheme relies on the same parameter estimates throughout 
the whole sample, the other schemes involve parameter corrections, which are made 
at a given frequency. To reflect these components in the violation process, we adopt 
the following notation:  
•  {𝐼𝐼𝑡𝑡,𝜃𝜃⋆(𝑝𝑝)} – the violation process based on the true VaR; 
•  {𝐼𝐼𝑡𝑡,𝜃𝜃𝑓𝑓(𝑝𝑝)} – the violation process based on VaR predictions made by a fixed 

forecasting scheme; 
•  {𝐼𝐼𝑡𝑡,𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟

𝑑𝑑 (𝑝𝑝)} – the violation process based on VaR predictions made by a rolling 
forecasting scheme with a parameter correction made every 𝑑𝑑 days; 

•  {𝐼𝐼𝑡𝑡,𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑 (𝑝𝑝)} – the violation process based on VaR predictions made by a recursive 
forecasting scheme with a parameter correction made every 𝑑𝑑 days. 

 The analysis of the above forecasting schemes is directly related to the first aim of 
our study – to find ways of coping with the problem of estimation risk. As opposed 
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to the previous studies, our research examines the possibilities of reducing the effects 
of estimation risk by adjusting the components of the forecasting scheme. In order 
to indicate such possibilities, we study the influence of the forecasting scheme 
components on the accuracy of the VaR test. We compare our outcomes with the 
results of the estimation errors correction through the previously proposed 
resampling methods. 
 Our research extends the previous studies on the undertaken subject also in the 
sense that it includes VaR tests belonging to six distinct classes, which allows for  
a broad comparison of these methods. In addition to the unconditional coverage test 
that underpins the international regulatory framework, we examine joint conditional 
coverage tests. Within this group, we first select the representatives of the testing 
procedures that directly refer to the correlation structure of the violation process. 
We consider methods developed in the standard Markov-chain convention or with 
the use of the autocorrelation function estimates. We then include indirect methods 
using the regression-based or the duration-based approach. Finally, we examine 
methods that were developed with the use of the spectral theory. Whenever 
available, we use the generalised versions of the test statistics. 

4. Backtesting framework 

Depending on the class, VaR backtests either refer to conditions (4)–(6) directly or 
operate on some implications of these conditions. They are most often designed in  
a way that allows tests of joint hypothesis (6). This hypothesis is typically reduced to 
a simplified criterion: 
 

 ℙ�𝐼𝐼𝑡𝑡,𝜃𝜃(𝑝𝑝) = 1�𝐼𝐼𝑡𝑡−1,𝜃𝜃(𝑝𝑝), 𝐼𝐼𝑡𝑡−2,𝜃𝜃(𝑝𝑝), … � = 𝑝𝑝, (7) 
 

which is a special case of (6). This criterion is equivalent to the requirement that the 
{𝐼𝐼𝑡𝑡,𝜃𝜃(𝑝𝑝)} process is i.i.d.5 Bernoulli with parameter 𝑝𝑝. While recent VaR tests 
generally correspond with the conditional coverage criterion in either of the two 
forms: (6) or (7), the pioneer VaR test by Kupiec (1995) was dedicated to checking 
unconditional coverage (4) exclusively. This test is still important for two reasons: 
firstly, it continues to be used by the international regulator and secondly, it serves to 
complement more complex procedures that verify VaR violation independence but 
have low power against incorrect unconditional coverage. This test checks (4) 
through the likelihood ratio statistic: 
 
𝐿𝐿𝑅𝑅𝑢𝑢𝑢𝑢𝐾𝐾 = −2(𝑃𝑃1log(𝑝𝑝) + (𝑃𝑃 − 𝑃𝑃1)log(1− 𝑝𝑝)− 𝑃𝑃1log(𝑝̂𝑝)− (𝑃𝑃 − 𝑃𝑃1)log(1− 𝑝̂𝑝)), (8) 

 
5 Independent and identically distributed. 
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where 𝑃𝑃1 is the number of VaR violations in the out-of-sample 𝑃𝑃 returns 
{𝑅𝑅𝑅𝑅+1,𝑅𝑅2, … ,𝑅𝑅𝑇𝑇} and 𝑝̂𝑝 is the ML estimate of the violation probability given by  
𝑝̂𝑝 = 𝑃𝑃1

𝑃𝑃
. 

 
 The Markov-chain framework proposed by Christoffersen (1998), which extends 
the 𝐿𝐿𝑅𝑅𝑢𝑢𝑢𝑢𝐾𝐾  approach to a joint test of the conditional coverage hypothesis, operates on 
first-order dependencies. To improve its power, it was generalised by Pajhede (2017) 
into a generalised Markov-chain VaR test. This test is based on two types of 
generalised probabilities: the excited 𝑝𝑝𝐸𝐸 and the steady 𝑝𝑝𝑆𝑆. They describe the 
probability of VaR violation in 𝐼𝐼𝑡𝑡,𝜃𝜃(𝑝𝑝) on condition that the previous violation has 
occurred (𝑝𝑝𝐸𝐸) or has not occurred (𝑝𝑝𝑆𝑆) in {𝐼𝐼𝑡𝑡−1,𝜃𝜃(𝑝𝑝), 𝐼𝐼𝑡𝑡−2,𝜃𝜃(𝑝𝑝), … , 𝐼𝐼𝑡𝑡−ℎ,𝜃𝜃(𝑝𝑝)}.  
The ML estimates of these probabilities are 𝑝̂𝑝𝐸𝐸 = 𝑇𝑇11/(𝑇𝑇10 + 𝑇𝑇11) and  
𝑝̂𝑝𝑆𝑆 = 𝑇𝑇01/(𝑇𝑇00 + 𝑇𝑇01), where 𝑃𝑃11 = ∑𝑇𝑇𝑡𝑡=𝑅𝑅+1 𝐼𝐼𝑡𝑡𝐽𝐽𝑡𝑡−1, 𝑃𝑃01 = ∑𝑇𝑇𝑡𝑡=𝑅𝑅+1 𝐼𝐼𝑡𝑡(1− 𝐽𝐽𝑡𝑡−1), 
𝑃𝑃10 = ∑𝑇𝑇𝑡𝑡=𝑅𝑅+1 (1− 𝐼𝐼𝑡𝑡)𝐽𝐽𝑡𝑡−1, 𝑃𝑃00 = ∑𝑇𝑇𝑡𝑡=𝑅𝑅+1 (1− 𝐼𝐼𝑡𝑡)(1− 𝐽𝐽𝑡𝑡−1), and 𝐽𝐽𝑡𝑡−1 =  
= 1{∑ℎ𝑖𝑖=1 𝐼𝐼𝑡𝑡−𝑖𝑖 > 0}.6 The estimates of the excited and the steady probabilities are 
used to build the generalised Markov-chain likelihood ratio test statistic: 
 

 𝐿𝐿𝑅𝑅𝑐𝑐𝑐𝑐
𝑀𝑀,𝑔𝑔𝑔𝑔𝑔𝑔 = −2�(𝑇𝑇01 + 𝑇𝑇11) log(𝑝𝑝) + (𝑇𝑇00 + 𝑇𝑇10) log(1− 𝑝𝑝) + 

−𝑇𝑇11log(𝑝̂𝑝𝐸𝐸)− 𝑇𝑇10log(1− 𝑝̂𝑝𝐸𝐸)− 𝑇𝑇01log(𝑝̂𝑝𝑆𝑆)− 𝑇𝑇00log(1− 𝑝̂𝑝𝑆𝑆)). 
(9) 

 
 Another direct way to conduct VaR backtesting on a custom number of 
dependencies between violations is through sample autocorrelations: 
 

 𝜌𝜌(𝑘𝑘) =
1

𝑃𝑃 − 𝑘𝑘
�
𝑇𝑇

𝑡𝑡=𝑅𝑅+𝑘𝑘+1

(𝐼𝐼𝑡𝑡,𝜃𝜃(𝑝𝑝) − 𝑝𝑝)(𝐼𝐼𝑡𝑡−𝑘𝑘,𝜃𝜃(𝑝𝑝) − 𝑝𝑝)
𝑝𝑝(1− 𝑝𝑝)

. (10) 

 
 This idea was utilised for example by Berkowitz et al. (2011), who proposed a VaR 
correlation test in the spirit of Ljung and Box (1978). This test uses the statistic in the 
following form: 
 

 𝐿𝐿𝐵𝐵𝑐𝑐𝑐𝑐 = 𝑃𝑃(𝑃𝑃 + 2)�
𝑚𝑚

𝑘𝑘=1

(𝜌𝜌(𝑘𝑘))2

𝑃𝑃 − 𝑘𝑘
, (11) 

 
where m is a chosen lag order. 
 

 
6 This corrects formula (18) from Pajhede (2017), where 𝐽𝐽𝑡𝑡−1 = 1{∑𝑘𝑘

𝑖𝑖=1 𝐼𝐼𝑡𝑡−1 > 0}, which in our notation takes 
the form of 𝐽𝐽𝑡𝑡−1 = 1{∑ℎ

𝑖𝑖=1 𝐼𝐼𝑡𝑡−𝑖𝑖 > 0}. 
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 The regression-based approach, which constitutes another class of tests, is built 
on the observation that under (6) the conditional expectation of demeaned process 
𝐼𝐼𝑡𝑡,𝜃𝜃(𝑝𝑝) − 𝑝𝑝 is equal to zero, i.e. 
 

 𝔼𝔼(𝐼𝐼𝑡𝑡,𝜃𝜃(𝑝𝑝)− 𝑝𝑝|ℱ𝑡𝑡−1) = 0. (12) 
 

 This expectation can be modelled by linear regression. In that case restriction (12) 
can be verified by means of testing the significance of the regression parameters. 
However, the binary character of the dependent variable implies that residuals from 
such a regression are heteroscedastic. Thus, the early proposition based on simple 
linear regression is replaced with tests that use the binary choice models. In the 
generalised test, proposed by Dumitrescu et al. (2012), the dynamic binary response 
model 
 

 ℙ(𝐼𝐼𝑡𝑡,𝜃𝜃(𝑝𝑝) = 1|ℱ𝑡𝑡) = 𝐸𝐸(𝐼𝐼𝑡𝑡,𝜃𝜃(𝑝𝑝)|ℱ𝑡𝑡) = 𝐹𝐹(𝜋𝜋𝑡𝑡) (13) 
 

uses c.d.f.7 𝐹𝐹 (usually Gaussian or exponential) and index 𝜋𝜋𝑡𝑡, which is given by the 
autoregressive equation. The general form of its representation is as follows: 
 

 
𝜋𝜋𝑡𝑡 = 𝜂𝜂 + �

𝑞𝑞1

𝑖𝑖=1

𝜆𝜆𝑖𝑖𝜋𝜋𝑡𝑡−𝑖𝑖 + �
𝑞𝑞2

𝑖𝑖=1

𝜙𝜙𝑖𝑖𝐼𝐼𝑡𝑡−𝑖𝑖,𝜃𝜃(𝑝𝑝) + �
𝑞𝑞3

𝑖𝑖=1

𝜓𝜓𝑖𝑖𝑙𝑙(𝑥𝑥𝑡𝑡−𝑖𝑖) + 

+�
𝑞𝑞4

𝑖𝑖=1

𝛾𝛾𝑖𝑖𝑙𝑙(𝑥𝑥𝑡𝑡−𝑖𝑖)𝐼𝐼𝑡𝑡−𝑖𝑖,𝜃𝜃(𝑝𝑝), 

(14) 

 
where 𝑙𝑙 links the variables from Ω𝑡𝑡 with 𝜋𝜋𝑡𝑡 and q1, q2, q3 and q4 are chosen lag 
orders. The restrictions on the parameters, corresponding to (12) are tested through 
the likelihood ratio of the form: 
 

𝐿𝐿𝑅𝑅𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑 = −2(log 𝐿𝐿��𝐼𝐼𝑅𝑅+1,𝜃𝜃(𝑝𝑝), … , 𝐼𝐼𝑇𝑇,𝜃𝜃(𝑝𝑝)��𝜂̂𝜂, 𝜆̂𝜆,𝜙𝜙�,𝜓𝜓�, 𝛾𝛾�� + 
− log 𝐿𝐿({𝐼𝐼𝑅𝑅+1,𝜃𝜃(𝑝𝑝), … , 𝐼𝐼𝑇𝑇,𝜃𝜃(𝑝𝑝)}|𝜂𝜂 = 𝐹𝐹−1(𝑝𝑝), 𝜆𝜆 = 𝜙𝜙 = 𝜓𝜓 = 𝛾𝛾 = 0)), 

(15) 

 
where        log 𝐿𝐿({𝐼𝐼𝑅𝑅+1,𝜃𝜃(𝑝𝑝), … , 𝐼𝐼𝑇𝑇,𝜃𝜃(𝑝𝑝)}|𝜂̂𝜂, 𝜆̂𝜆, 𝛿̂𝛿,𝜓𝜓�, 𝛾𝛾�) = ∑𝑇𝑇𝑡𝑡=𝑅𝑅+1 (𝐼𝐼𝑡𝑡,𝜃𝜃(𝑝𝑝) log 𝐹𝐹(𝜋𝜋𝑡𝑡) + 
− (1−  𝐼𝐼𝑡𝑡,𝜃𝜃(𝑝𝑝)) log (1− 𝐹𝐹(𝜋𝜋𝑡𝑡))),              𝜆𝜆 = (𝜆𝜆1, … , 𝜆𝜆𝑞𝑞1),             𝜙𝜙 = (𝜙𝜙1, … ,𝜙𝜙𝑞𝑞2),      
𝜓𝜓 = (𝜓𝜓1, … ,𝜓𝜓𝑞𝑞3),   𝛾𝛾 = (𝛾𝛾1, … , 𝛾𝛾𝑞𝑞4). 
 
 Another way of verifying criterion (6) is through the duration-based framework. 
It transforms violation process {𝐼𝐼𝑡𝑡,𝜃𝜃(𝑝𝑝)} into a {𝐷𝐷𝑗𝑗,𝜃𝜃(𝑝𝑝)} process of durations and 
requires that the latter process follows the geometric distribution with parameter 𝑝𝑝. 
The transformation into durations is defined as: 

 
7 Cumulative distribution function. 
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 𝐷𝐷𝑗𝑗,𝜃𝜃(𝑝𝑝) = 𝑡𝑡𝑗𝑗 − 𝑡𝑡𝑗𝑗−1, (16) 
 

where 𝑡𝑡𝑗𝑗 denotes the time of the 𝑗𝑗-th VaR violation in process {𝐼𝐼𝑡𝑡,𝜃𝜃(𝑝𝑝)}. The 
generalised geometric-VaR test by Pelletier and Wei (2016) confronts the hazard 
function of the geometric distribution with the following general form of a hazard 
function: 
 

 𝜆𝜆𝑑𝑑
𝑗𝑗 = 𝑎𝑎𝑑𝑑𝑏𝑏−1𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐𝑅𝑅𝑡𝑡𝑗𝑗−1+𝑑𝑑 , (17) 

 
where 0 ≤ 𝑎𝑎 < 1, 0 ≤ 𝑏𝑏 ≤ 1, 𝑐𝑐 ≥ 0. The relevant restrictions on its parameters are 
verified through the likelihood ratio: 
 

𝐿𝐿𝑅𝑅𝑐𝑐𝑐𝑐
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑉𝑉𝑉𝑉𝑉𝑉 = −2(log 𝐿𝐿��𝐷𝐷1,𝜃𝜃(𝑝𝑝), … ,𝐷𝐷𝑁𝑁,𝜃𝜃(𝑝𝑝)��𝑎𝑎�, 𝑏𝑏�, 𝑐̂𝑐� + 
− log 𝐿𝐿({𝐷𝐷1,𝜃𝜃(𝑝𝑝), … ,𝐷𝐷𝑁𝑁,𝜃𝜃(𝑝𝑝)}|𝑎𝑎 = 𝑝𝑝, 𝑏𝑏 = 1, 𝑐𝑐 = 0)), 

(18) 

 
where 
log𝐿𝐿�{𝐷𝐷1,𝜃𝜃(𝑝𝑝), … ,𝐷𝐷𝑁𝑁,𝜃𝜃(𝑝𝑝)}|𝑎𝑎, 𝑏𝑏� = 𝐶𝐶1 log 𝑆𝑆 �𝐷𝐷1,𝜃𝜃(𝑝𝑝)� + (1 − 𝐶𝐶1) log 𝑓𝑓 �𝐷𝐷1,𝜃𝜃(𝑝𝑝)� + 
+ ∑𝑁𝑁−1𝑗𝑗=2 log 𝑓𝑓(𝐷𝐷𝑗𝑗,𝜃𝜃(𝑝𝑝)) + 𝐶𝐶𝑁𝑁 log 𝑆𝑆(𝐷𝐷𝑁𝑁,𝜃𝜃(𝑝𝑝)) + (1 − 𝐶𝐶𝑁𝑁) log 𝑓𝑓(𝐷𝐷𝑁𝑁,𝜃𝜃(𝑝𝑝)), 𝑓𝑓(𝑑𝑑) = 
= (1− 𝜆𝜆1

𝑗𝑗)(1− 𝜆𝜆2
𝑗𝑗) … (1 − 𝜆𝜆𝑑𝑑−1

𝑗𝑗 )𝜆𝜆𝑑𝑑
𝑗𝑗 , 𝑆𝑆(𝑑𝑑) = 1 − (1− 𝜆𝜆1

𝑗𝑗)(1− 𝜆𝜆2
𝑗𝑗) … (1− 𝜆𝜆𝑑𝑑−1

𝑗𝑗 ), 
{𝐷𝐷1,𝜃𝜃(𝑝𝑝), … ,𝐷𝐷𝑁𝑁,𝜃𝜃(𝑝𝑝)} is the sample of durations and {𝐶𝐶1, … ,𝐶𝐶𝑁𝑁} indicates censoring. 
 
 A different transformation of the {𝐼𝐼𝑡𝑡,𝜃𝜃(𝑝𝑝)} process is used within the spectral VaR 
testing framework. These methods rely on spectral density – the spectral transform 
of the autocovariance function of the violation process. Since under the i.i.d. 
Bernoulli violations, this spectral transform is a flat function, the tests consist in 
comparing the observed spectral density with the theoretical flat shape. The 
Anderson-Darling test statistic proposed by Małecka (2016) is given by: 
 

 𝑆𝑆𝐷𝐷𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴 = �
1

0
 
𝑈𝑈(𝑡𝑡)2

𝑡𝑡(1− 𝑡𝑡)
𝑑𝑑𝑑𝑑, (19) 

 
where 𝑈𝑈(𝑡𝑡) is the function that measures the distance between the estimated and 
theoretical spectral density. It is given by: 
 

 𝑈𝑈𝑃𝑃(𝑡𝑡) = √2𝑃𝑃�
π𝑡𝑡

0
�
𝒫𝒫𝑃𝑃(𝜔𝜔)
𝜎𝜎(0) −

1
2𝜋𝜋
�𝑑𝑑𝑑𝑑 =

√2
π
�
𝑃𝑃−1

𝑘𝑘=1

√𝑃𝑃𝜌𝜌(𝑘𝑘)
sin𝑘𝑘π𝑡𝑡
𝑘𝑘

,  

 𝑡𝑡 ∈ [0, 1], 

(20) 
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where 𝒫𝒫𝑃𝑃(𝜔𝜔) = 1
2π
∑𝑃𝑃−1𝑘𝑘=−(𝑃𝑃−1)  𝜎𝜎(𝑘𝑘)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 is the periodogram estimate of the 

spectral density, 𝜎𝜎(𝑘𝑘) and 𝜌𝜌(𝑘𝑘), respectively, are the estimates of the 𝑘𝑘-th order 
autocovariances and autocorrelations of the violation process. 
 
 Under standard conditions, the likelihood ratio statistics are asymptotically 𝜒𝜒2 
distributed with the number of degrees of freedom corresponding to the number of 
tested restrictions. Therefore, the Kupiec 𝐿𝐿𝑅𝑅𝑢𝑢𝑢𝑢𝐾𝐾 , the Markov-chain 𝐿𝐿𝑅𝑅𝑐𝑐𝑐𝑐

𝑀𝑀,𝑔𝑔𝑔𝑔𝑔𝑔, the 
Ljung-Box 𝐿𝐿𝐵𝐵𝑐𝑐𝑐𝑐 and the dynamic binary 𝐿𝐿𝑅𝑅𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑 tests use 𝜒𝜒12, 𝜒𝜒22, 𝜒𝜒𝑘𝑘2 and 
𝜒𝜒𝑞𝑞1+𝑞𝑞2+𝑞𝑞3+𝑞𝑞4+1
2  distributions, respectively. The theoretical distribution of the 

duration-based statistic diverges from the standard asymptotic likelihood ratio 
distribution due to the specific boundary case. It has been shown to be a mixture 
distribution of form 0.25𝜒𝜒12 + 0.5𝜒𝜒22 + 0.25𝜒𝜒32 (Małecka, 2016). The 𝑆𝑆𝐷𝐷𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴 test is 
based on the Anderson-Darling distribution (Anderson & Darling, 1952). 

5. Robust inference 

5.1. Size of VaR tests 

The standard VaR backtesting procedures are based on the theoretical distributions 
given in Section 4. Whether such tests guarantee a reliable classification of VaR 
models depends on several aspects. Firstly, tests based on these distributions need to 
be well-sized. Here, by ‘well-sized’ we understand well-sized under the absence of 
estimation risk. This means that, under the absence of estimation risk, the frequency 
of rejecting correct models should coincide with the chosen significance level. Since 
all the considered distributions are based on limit theorems, this property may be 
violated as a result of applying asymptotic properties to finite samples. Secondly, the 
tests need to be robust to estimation risk. As argued in Section 3, the convergence of 
the test statistics to their theoretical distributions may be affected by this additional 
factor. The estimation risk results from the noise in the violation process that follows 
from the procedure of estimating and forecasting VaR with the effect that proper 
risk models may be overrejected due to estimation errors. Thirdly, the tests should 
be effective at detecting incorrect models. In particular, they should be powerful 
both against incorrect unconditional and conditional coverage. Out of these three 
aspects, we focus on the influence of estimation risk on test accuracy. However, to 
properly combine all the elements of the testing procedure, the evaluation of the 
effects of the estimation risk is preceded by a size study that assumes the absence of 
such a risk. This study serves two purposes: it indicates the tests which have the 
potential to be well-sized in finite samples when based on asymptotic distributions, 
and it provides benchmark size estimates for a further robustness check. The tests 
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that do not meet the requirements of this preliminary size assessment are excluded 
from the further phases of the procedure. What then follows is the core part of the 
process which introduces estimation risk and finally, both parts are complemented 
by the power evaluation. 
 The finite sample test sizes are evaluated by means of the MC method based on 
rejection frequencies observed in simulations which assume correct conditional 
coverage. To ensure the comparability with previous studies (Candelon et al., 2011; 
Dumitrescu et al., 2012; Escanciano & Olmo, 2010, 2011), our simulations are based 
on the t-GARCH process of the 𝑅𝑅𝑡𝑡 = �ℎ𝑡𝑡𝜖𝜖𝑡𝑡 form, where 𝜖𝜖𝑡𝑡 follows Student 𝑡𝑡 
distribution 𝑡𝑡𝑣𝑣 and the variance is represented by: 
 

 ℎ𝑡𝑡 = 𝜔𝜔1 + 𝛼𝛼1𝜖𝜖𝑡𝑡−12 + 𝛽𝛽1ℎ𝑡𝑡−12 , (21) 
 

with the following parameter values: 𝜔𝜔1∗ = 0.0001, 𝛼𝛼1∗ = 0.1, 𝛽𝛽1∗ = 0.85 and  
𝑣𝑣∗ = 10. Therefore, model ℳ in our study is ℳ = {𝑉𝑉𝑉𝑉𝑅𝑅𝑡𝑡|𝑡𝑡−1,𝑝𝑝(𝜔𝜔1,𝛼𝛼1,𝛽𝛽1, 𝑣𝑣): 
𝜔𝜔1,𝛼𝛼1,𝛽𝛽1 > 0,𝛼𝛼1 + 𝛽𝛽1 < 1}. The returns generated by the process above are 
compared with the VaR estimates set to 𝑉𝑉𝑉𝑉𝑅𝑅𝑡𝑡|𝑡𝑡−1,𝑝𝑝(𝜔𝜔1∗ ,𝛼𝛼1∗,𝛽𝛽1∗) = �ℎ𝑡𝑡𝐹𝐹𝑡𝑡𝑣𝑣⋆

−1(𝑝𝑝), 
where 𝐹𝐹𝑡𝑡𝑣𝑣 denotes the c.d.f. of Student 𝑡𝑡 distribution 𝑡𝑡𝑣𝑣. The resulting violation 
process – {𝐼𝐼1,𝜃𝜃∗(𝑝𝑝), … , 𝐼𝐼𝑃𝑃,𝜃𝜃∗(𝑝𝑝)} – is then used to conduct testing procedures. The 
sample sizes are as follows: 𝑃𝑃 = 250, 500, 750, 1,000, 1,250, 1,500 and the standard 
significance levels: 𝛼𝛼 = 0.01, 0.05, 0.1. The VaR coverage level is first set to the 
typical 𝑝𝑝 = 5% and subsequently to 𝑝𝑝 = 1%, which corresponds to the current 
trends in regulatory standards. The rejection frequencies are computed over 10,000 
MC repetitions. 
 The study combines VaR backtesting procedures from various classes. The first 
procedure is the 𝐿𝐿𝑅𝑅𝑢𝑢𝑢𝑢𝐾𝐾  unconditional coverage test by Kupiec (1995), which 
continues to be the underlying procedure of the Basel standards (BCBS, 2017). This 
test is followed by conditional coverage tests belonging to five classes. Wherever 
available, we use the generalised versions of the test statistics. Thus, from the 
Markov-chain framework, we apply the generalised 𝐿𝐿𝑅𝑅𝑐𝑐𝑐𝑐

𝑀𝑀,𝑔𝑔𝑔𝑔𝑔𝑔 test by Pajhede (2017). 
Relying on the primary study of its properties, we select parameters 𝑝𝑝𝐸𝐸 and 𝑝𝑝𝑆𝑆 to be 
the violation probabilities on condition that the previous violation occurred in the 
last five observations. The same lag order is chosen in the 𝐿𝐿𝐵𝐵𝑐𝑐𝑐𝑐 Ljung-Box-type test, 
which is based on Berkowitz et al. (2011). This procedure represents the correlation 
class of VaR tests. In the 𝐿𝐿𝑅𝑅𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑 dynamic binary test, representing the class of 
regression-based methods, we adopt the following representation of the 𝜋𝜋𝑡𝑡 index: 
𝜋𝜋𝑡𝑡 = 𝜂𝜂 + 𝜆𝜆1𝜋𝜋𝑡𝑡−1. This choice follows from the accuracy results presented by 
Dumitrescu et al. (2012), who developed this test. The broad class of the duration-
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based methods is represented by the 𝐿𝐿𝑅𝑅𝑐𝑐𝑐𝑐
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑉𝑉𝑉𝑉𝑉𝑉 generalised statistic proposed by 

Pelletier and Wei (2016), which uses time dependencies in the violation process as 
well as lagged VaR forecasts as explanatory variables. To represent the spectral 
methods, we apply the 𝑆𝑆𝐷𝐷𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴 test based on the Anderson-Darling statistic, as 
advocated by Małecka (2016). 
 The size results under the absence of estimation risk, presented in Table 1, show 
substantial differences in test accuracy both among the specific procedures and 
between the VaR coverage levels. There is clearly less accuracy when operating on 
the lower, 1% VaR level. For 1% VaR, the only tests that may be treated as 
satisfactory in terms of size are the 𝐿𝐿𝑅𝑅𝑢𝑢𝑢𝑢𝐾𝐾  Kupiec test and the 𝑆𝑆𝐷𝐷𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴 spectral test. In 
the latter case, this is additionally limited to the highest significance level of 0.1. One 
more restriction that holds for such a low VaR level is that the sample size should 
consist of at least 750 observations for both tests. As regards the 5% VaR level, the 
accuracy of the test improves greatly. In this case, most considered procedures seem 
to be well-sized at all significance levels. These are the 𝐿𝐿𝑅𝑅𝑢𝑢𝑢𝑢𝐾𝐾 , 𝐿𝐿𝑅𝑅𝑐𝑐𝑐𝑐

𝑀𝑀,𝑔𝑔𝑔𝑔𝑔𝑔, 𝐿𝐿𝐵𝐵𝑐𝑐𝑐𝑐, 
𝐿𝐿𝑅𝑅𝑐𝑐𝑐𝑐

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑉𝑉𝑉𝑉𝑉𝑉, and 𝑆𝑆𝐷𝐷𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴 tests. The recommendable sample sizes depend on the type 
of procedure, but for most tests, they start with 250 or 500 observations. Only the 
𝐿𝐿𝐵𝐵𝑐𝑐𝑐𝑐 Ljung-Box and 𝑆𝑆𝐷𝐷𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴 spectral tests seem to require longer samples of e.g. 1,000 
or more observations. One clear exception emerges in this general description of the 
convergence of the true test sizes to nominal levels – the 𝐿𝐿𝑅𝑅𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑 dynamic binary test. 
This procedure appears to be systematically undersized. Its true size most often 
proves to be below half of the nominal significance level. Due to such a large level of 
inaccuracy, this test is considered not fit for implementation based on the theoretical 
distribution. Thus, we exclude it from the further parts of our study. Systematic 
discrepancies are also observed for the Ljung-Box test. This test, in contrast to the 
𝐿𝐿𝑅𝑅𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑, seems to be oversized. However, in this case, the inaccuracies are on a much 
smaller scale, so we decide to include this test in our research. 
 As the 𝐿𝐿𝑅𝑅𝑢𝑢𝑢𝑢𝐾𝐾 , 𝐿𝐿𝑅𝑅𝑐𝑐𝑐𝑐

𝑀𝑀,𝑔𝑔𝑔𝑔𝑔𝑔, 𝐿𝐿𝐵𝐵𝑐𝑐𝑐𝑐, 𝐿𝐿𝑅𝑅𝑐𝑐𝑐𝑐
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑉𝑉𝑉𝑉𝑉𝑉, and 𝑆𝑆𝐷𝐷𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴 procedures appear to satisfy 

the correct-size property under the absence of estimation risk, we treat them as 
having the potential to be well-sized also under the presence of such a risk. In these 
circumstances, they may be recommended for use with asymptotic distributions. 
However, their robustness to estimation errors needs to be checked in relevant 
simulation experiments, which we carry out in the next part of our study. 
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Table 1. Size estimates for the VaR tests under the absence of estimation risk by significance levels 

Series length 
5% VaR 

𝐿𝐿𝑅𝑅𝑢𝑢𝑢𝑢𝐾𝐾  𝐿𝐿𝑅𝑅𝑐𝑐𝑐𝑐
𝑀𝑀,𝑔𝑔𝑔𝑔𝑔𝑔 𝐿𝐿𝐵𝐵𝑐𝑐𝑐𝑐 𝐿𝐿𝑅𝑅𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑 𝐿𝐿𝑅𝑅𝑐𝑐𝑐𝑐

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑉𝑉𝑉𝑉𝑉𝑉 𝑆𝑆𝐷𝐷𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴 

0.01 
    250  .....................................  0.0084 0.0101 0.0482 0.0049 0.0097 0.0162 
    500  .....................................  0.0122 0.0165 0.0342 0.0050 0.0096 0.0124 
    750  .....................................  0.0133 0.0097 0.0207 0.0050 0.0114 0.0095 
1,000  .....................................  0.0098 0.0100 0.0190 0.0046 0.0113 0.0112 
1,250  .....................................  0.0106 0.0101 0.0170 0.0040 0.0122 0.0124 
1,500  .....................................  0.0099 0.0114 0.0168 0.0060 0.0099 0.0106 

0.05 
    250  .....................................  0.0582 0.0529 0.1160 0.0309 0.0447 0.0416 
    500  .....................................  0.0536 0.0518 0.0810 0.0274 0.0504 0.0403 
    750  .....................................  0.0559 0.0538 0.0666 0.0230 0.0574 0.0419 
1,000  .....................................  0.0525 0.0484 0.0664 0.0230 0.0545 0.0538 
1,250  .....................................  0.0433 0.0518 0.0635 0.0230 0.0549 0.0497 
1,500  .....................................  0.0496 0.0534 0.0619 0.0280 0.0471 0.0489 

0.1 
    250  .....................................  0.1121 0.1483 0.1446 0.0459 0.0928 0.0692 
    500  .....................................  0.1018 0.1180 0.1237 0.0488 0.1067 0.0729 
    750  .....................................  0.1146 0.1019 0.1110 0.0570 0.1096 0.0763 
1,000  .....................................  0.1092 0.1028 0.1132 0.0400 0.1033 0.0896 
1,250  .....................................  0.1048 0.0978 0.1107 0.0510 0.1086 0.0947 
1,500  .....................................  0.0924 0.1050 0.1063 0.0490 0.0967 0.1027 

(cont.) 

Series length 
1% VaR 

𝐿𝐿𝑅𝑅𝑢𝑢𝑢𝑢𝐾𝐾  𝐿𝐿𝑅𝑅𝑐𝑐𝑐𝑐
𝑀𝑀,𝑔𝑔𝑔𝑔𝑔𝑔 𝐿𝐿𝐵𝐵𝑐𝑐𝑐𝑐 𝐿𝐿𝑅𝑅𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑 𝐿𝐿𝑅𝑅𝑐𝑐𝑐𝑐

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑉𝑉𝑉𝑉𝑉𝑉 𝑆𝑆𝐷𝐷𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴 

0.01 
    250  .....................................  0.0039 0.0037 0.1173 0.0030 0.0010 0.0355 
    500  .....................................  0.0042 0.0031 0.1978 0.0089 0.0034 0.0416 
    750  .....................................  0.0076 0.0042 0.0599 0.0030 0.0060 0.0449 
1,000  .....................................  0.0120 0.0074 0.0691 0.0070 0.0099 0.0447 
1,250  .....................................  0.0102 0.0068 0.0513 0.0020 0.0091 0.0394 
1,500  .....................................  0.0120 0.0068 0.0593 0.0010 0.0070 0.0368 

0.05 
    250  .....................................  0.0142 0.0174 0.1173 0.0088 0.0111 0.0438 
    500  .....................................  0.0627 0.0244 0.1978 0.0176 0.0218 0.0589 
    750  .....................................  0.0362 0.0259 0.2984 0.0124 0.0383 0.0768 
1,000  .....................................  0.0556 0.0298 0.0883 0.0270 0.0423 0.0800 
1,250  .....................................  0.0663 0.0436 0.1087 0.0150 0.0364 0.0785 
1,500  .....................................  0.0563 0.0374 0.0885 0.0180 0.0372 0.0810 

0.1 
    250  .....................................  0.0422 0.0432 0.1173 0.1071 0.0281 0.0611 
    500  .....................................  0.0627 0.0761 0.1978 0.0590 0.1025 0.0718 
    750  .....................................  0.0974 0.0644 0.2998 0.0382 0.0891 0.0987 
1,000  .....................................  0.1155 0.0864 0.1462 0.0510 0.0715 0.1033 
1,250  .....................................  0.1193 0.0716 0.1259 0.0430 0.0714 0.1091 
1,500  .....................................  0.1248 0.0720 0.1401 0.0410 0.0743 0.1081 

Source: author’s calculations. 
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5.2. Estimation risk 

Our study of the robustness to estimation risk focuses on the components of the 
forecasting scheme, i.e. the type of the scheme and the frequency of the parameter 
correction. To the best of our knowledge, the influence of the forecasting scheme on 
the VaR testing framework has not yet been examined. The available studies are 
limited to fixed forecasting schemes only. These papers show the dramatic effects 
that estimation errors have on test accuracy and advocate the use of the subsampling 
(Candelon et al., 2011) or bootstrap technique (Dumitrescu et al., 2012) to correct 
these errors. In interpreting their results, however, two factors are of practical 
importance. Firstly, such results cannot be generalised, since, by definition, the fixed 
forecasting scheme creates the largest estimation risk. Secondly, the industry 
standard requires the adoption of other schemes and the correction of parameters 
with a predefined frequency. Therefore, our study includes several realistic 
forecasting schemes. 
 The MC study of the influence of estimation errors on test accuracy requires 
generating a 𝑇𝑇-element sample of the returns from model ℳ, which serves to 
provide both the in-sample data used for estimating the parameters of ℳ, and the 
out-of-sample data used to forecast the violation process and conduct the testing. 
The rejection frequency observed over a sufficiently large number of repetitions 
during the procedure of estimation and testing gives the approximate test size. Due 
to the inclusion of the estimation process, such a proxy for the test size involves 
estimation risk. 
 In order to include the forecasting scheme effects, we start with a fixed forecasting 
scheme which assumes that parameters are estimated once, from the 𝑅𝑅 beginning 
observations. These estimates serve to produce VaR forecasts throughout the 
remaining 𝑃𝑃-observation period, where 𝑃𝑃 = 𝑇𝑇 − 𝑅𝑅. Based on the obtained forecasts, 
we generate violation process {𝐼𝐼𝑅𝑅+1,𝜃𝜃𝑓𝑓(𝑝𝑝), … , 𝐼𝐼𝑇𝑇,𝜃𝜃𝑓𝑓(𝑝𝑝)}. Then, we proceed to the 
rolling scheme, in which the estimation window of length 𝑃𝑃 is moved over the 
sample and used to produce one-day-ahead forecasts. We apply this scheme at 
different frequencies of parameter correction: every day, every five days and every  
10 days. We obtain the following violation processes: {𝐼𝐼𝑅𝑅+1,𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟

1 (𝑝𝑝), … , 𝐼𝐼𝑇𝑇,𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟
1 (𝑝𝑝)}, 

{𝐼𝐼𝑅𝑅+1,𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟
5 (𝑝𝑝), … , 𝐼𝐼𝑇𝑇,𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟

5 (𝑝𝑝)} and {𝐼𝐼𝑅𝑅+1,𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟
10 (𝑝𝑝), … , 𝐼𝐼𝑇𝑇,𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟

10 (𝑝𝑝)}, respectively, from these 
procedures. For the recursive scheme, the procedures are analogous, except that the 
initial estimation window of length 𝑃𝑃 is not moved but extended to  
include more observations. Everyday, five-day and 10-day parameter corrections 
serve to generate the following violation processes: {𝐼𝐼𝑅𝑅+1,𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟1 (𝑝𝑝), … , 𝐼𝐼𝑇𝑇,𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟1 (𝑝𝑝)}, 
{𝐼𝐼𝑅𝑅+1,𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟5 (𝑝𝑝), … , 𝐼𝐼𝑇𝑇,𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟5 (𝑝𝑝)} and {𝐼𝐼𝑅𝑅+1,𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟10 (𝑝𝑝), … , 𝐼𝐼𝑇𝑇,𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟10 (𝑝𝑝)}, respectively. Each of 
these violation processes involves a different level of estimation risk. We assess the 
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impact of this risk on the test size by applying all of the considered VaR tests to all of 
the generated violation processes during each MC repetition. The size estimates 
produced from these procedures are called uncorrected size estimates. Despite the 
fact that the procedures involve parameter corrections, the word ‘uncorrected’ 
signifies consistency with the previous studies and refers to the use of standard 
asymptotic distributions instead of the resampled ones. The uncorrected sizes 
corresponding to the various forecasting schemes are computed over 5,000 MC 
repetitions. 
 A natural extension to our robustness check is the incorporation of the 
forecasting scheme components which we study as a means of controlling the 
estimation risk. For this purpose, we compare the scale of the reduction in the 
estimation risk achieved with the help of the most suitable forecasting scheme with 
the performance of the subsampling technique,8 proposed previously to address the 
issue of estimation risk. The sizes corrected by the subsampling method are obtained 
by using subsampled approximates of the test statistic distributions. The subsampled 
distrubutions are generated at each MC repetition. Generating them requires that 
the subsets of length 𝑢𝑢, of form {𝑅𝑅𝑠𝑠 ,𝑅𝑅𝑠𝑠+1, … ,𝑅𝑅𝑠𝑠+𝑢𝑢−1}, 𝑠𝑠 = 1, … ,𝑇𝑇 − 𝑢𝑢 + 1 are 
divided into the in-sample parts of length 𝑅𝑅𝑢𝑢 and the out-of-sample parts of  
length 𝑃𝑃𝑢𝑢, so that 𝑃𝑃𝑢𝑢

𝑅𝑅𝑢𝑢
= 𝑃𝑃

𝑅𝑅
 and 𝑅𝑅𝑢𝑢 + 𝑃𝑃𝑢𝑢 = 𝑢𝑢. These subsets are moved across the data,  

which gives 𝑁𝑁𝑢𝑢 = 𝑇𝑇 − 𝑢𝑢 + 1 repetitions. For each 𝑠𝑠 = 1, … ,𝑇𝑇 − 𝑢𝑢 + 1, the 
following substeps are conducted:9 
1. estimation of the parameters of model ℳ from the in-sample part: {𝑅𝑅𝑠𝑠,𝑅𝑅𝑠𝑠+1, … , 
𝑅𝑅𝑠𝑠+𝑅𝑅𝑢𝑢−1}; 

2. producing a VaR violation process: {𝐼𝐼𝑠𝑠+𝑅𝑅𝑢𝑢(𝑝𝑝), … , 𝐼𝐼𝑠𝑠+𝑢𝑢−1(𝑝𝑝)}; 
3. computing the test statistic from: {𝐼𝐼𝑠𝑠+𝑅𝑅𝑢𝑢(𝑝𝑝), … , 𝐼𝐼𝑠𝑠+𝑢𝑢−1(𝑝𝑝)}. 
 The steps above are repeated 1,000 times to receive the subsampling-corrected 
distribution. With this distribution, we compute the p-value for the test statistics and 
make test decisions. From a large number of repetitions which involve a whole 
simulation procedure and together with the nested simulations from substeps 1–3, 
we can approximate the test sizes into what we call subsampling-corrected sizes. 
Since such nested simulations are very time-consuming, we set the number of  
MC repetitions to 1,000. Together with 1,000 repetitions of substeps 1–3, it gives 
1,000 ∙ 1,000 = 1,000,000 repetitions. 
 The study of the effects of estimation risk includes all the previously considered 
tests except for the 𝐿𝐿𝑅𝑅𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑 procedure. This test is rejected as it generates the largest 

 
8 The choice of the subsampling technique as a representative of the resampling methods was determined 

by our preliminary study, where this method proved more accurate than the bootstrap one. 
9 A detailed description of the subsampling technique for correcting estimation risk can be found e.g. in 

Candelon et al. (2011). 
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size distortions, which show the irrelevance of using its asymptotic distribution in 
finite samples. Therefore, it does not fulfil our aim of indicating asymptotic tests that 
are both accurate and robust to estimation risk. We provide the results for a 5% VaR 
and a 0.05 significance level. 
 The estimates of the uncorrected and corrected sizes are presented in Table 2. The 
results for the fixed forecasting scheme confirm the conclusions from Candelon et al. 
(2011) about the large influence of estimation risk on the accuracy of tests, i.e. 
estimation errors cause the test accuracy to decrease dramatically. The uncorrected 
test sizes reach the level of over 0.1 instead of the nominal 0.01 level, 0.3 instead of 
0.05 and 0.4 instead of 0.1. These results almost exactly match the scale of influence 
reported by Candelon et al. (2011). 
 
Table 2. Size estimates of VaR tests under the presence of estimation risk by significance levels 

Assumption 𝐿𝐿𝑅𝑅𝑢𝑢𝑢𝑢𝐾𝐾  𝐿𝐿𝑅𝑅𝑐𝑐𝑐𝑐
𝑀𝑀,𝑔𝑔𝑔𝑔𝑔𝑔 𝐿𝐿𝐵𝐵𝑐𝑐𝑐𝑐 𝐿𝐿𝑅𝑅𝑐𝑐𝑐𝑐

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑉𝑉𝑉𝑉𝑉𝑉 𝑆𝑆𝐷𝐷𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴  

0.01 

Absence of estimation risk  ..............................................  0.0098 0.0100 0.0190 0.0113 0.0112 
Fixed scheme: uncorrected asymptotic distribution 0.1594 0.1476 0.1052 0.1833 0.0469 

subsampling corrected distribution 0.0266 0.0280 0.0300 0.0280 0.0250 
Rolling scheme: 10-day parameter correction  .........  0.0037 0.0036 0.0334 0.0244 0.0148 

5-day parameter correction  ...........  0.0031 0.0033 0.0294 0.0234 0.0133 
everyday parameter correction  ....  0.0035 0.0039 0.0240 0.0211 0.0091 

Recursive scheme: 10-day parameter correction  ....  0.0150 0.0125 0.0271 0.0173 0.0142 
5-day parameter correction  ......  0.0141 0.0114 0.0261 0.0179 0.0131 
everyday parameter correction  0.0148 0.0107 0.0240 0.0169 0.0114 

0.05 

Absence of estimation risk  ..............................................  0.0525 0.0484 0.0664 0.0545 0.0538 
Fixed scheme: uncorrected asymptotic distribution 0.2667 0.2664 0.2036 0.3498 0.1261 

subsampling corrected distribution 0.0680 0.0650 0.0540 0.1160 0.0620 
Rolling scheme: 10-day parameter correction  .........  0.0213 0.0319 0.1206 0.1046 0.0679 

5-day parameter correction  ...........  0.0201 0.0293 0.1126 0.1035 0.0626 
everyday parameter correction  ....  0.0199 0.0284 0.1007 0.0997 0.0544 

Recursive scheme: 10-day parameter correction  ....  0.0607 0.0585 0.0951 0.0847 0.0597 
5-day parameter correction  ......  0.0594 0.0561 0.0922 0.0846 0.0566 
everyday parameter correction  0.0584 0.0561 0.0880 0.0836 0.0547 

0.1 

Absence of estimation risk  ..............................................  0.1092 0.1028 0.1132 0.1033 0.0896 
Fixed scheme: uncorrected asymptotic distribution 0.3393 0.3564 0.2683 0.4610 0.1932 

subsampling corrected distribution 0.0833 0.1100 0.0800 0.2161 0.0762 
Rolling scheme: 10-day parameter correction  .........  0.0591 0.0716 0.1957 0.1961 0.1251 

5-day parameter correction  ...........  0.0578 0.0681 0.1841 0.1959 0.1165 
everyday parameter correction  ....  0.0585 0.0645 0.1719 0.1925 0.1049 

Recursive scheme: 10-day parameter correction  ....  0.1106 0.1111 0.1580 0.1649 0.1127 
5-day parameter correction  ......  0.1113 0.1104 0.1550 0.1640 0.1104 
everyday parameter correction  0.1115 0.1077 0.1475 0.1659 0.1059 

Note. All size results in the table assume testing a 5% VaR. The results indicating the absence of estimation 
risk have been provided for the purpose of comparison. 
Source: author’s calculations. 
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 The results also confirm that the subsampling technique reduces the effects of the 
estimation errors. The match between the subsampling-corrected sizes and the 
nominal levels depends on the adopted procedure. However, looking at all the 
procedures, the corrected sizes fit in a 0.02–0.03 interval for the nominal level of 
0.01, in 0.05–0.11 for 0.05, and in 0.08–0.21 for 0.1. These size results are closer to 
the desired values than the uncorrected ones, but still, the quality of the match may 
be questioned during practical applications. 
 From the point of view of our aims, the key conclusions refer to the effects that 
various forecasting schemes have on estimation risk. The inclusion of the rolling and 
recursive schemes into the studied processes significantly changes the influence of 
estimation risk on the test sizes. This effect is large enough to alter the conclusions 
presented in the previous studies, advocating for the application of resampling 
methods. Our research demonstrates that in most cases, the employment of  
a properly selected forecasting scheme results in better-sized tests than the use of  
a subsampling technique. In two cases – for 𝐿𝐿𝑅𝑅𝑐𝑐𝑐𝑐

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑉𝑉𝑉𝑉𝑉𝑉 and 𝑆𝑆𝐷𝐷𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴 – any forecasting 
scheme with a parameter correction, regardless of whether it is rolling or recursive, 
yields better results in terms of the test size than the subsampling method. For 𝐿𝐿𝑅𝑅𝑢𝑢𝑢𝑢𝐾𝐾  
and 𝐿𝐿𝑅𝑅𝑐𝑐𝑐𝑐

𝑀𝑀,𝑔𝑔𝑔𝑔𝑔𝑔, the recursive scheme is recommended. This scheme takes full 
advantage of the available sample size for estimating the parameters, so the sample 
length is crucial in these cases. For these two tests, the results obtained with the help 
of the recursive scheme at any frequency of parameter correction are more accurate 
than the ones coming from the subsampled distributions. As regards the 
improvements obtained in various tests resulting from the changes of the forecasting 
scheme, the largest gains in test accuracy occur along a shift from a fixed forecasting 
scheme to a rolling or recursive scheme. The differences then between daily, five-day 
or 10-day corrections are systematic although rather minor. 
 The only test where subsampling outperforms testing based on asymptotic 
distribution and where the parameter corrections in any of the schemes do not 
reduce this effect is the Ljung-Box 𝐿𝐿𝐵𝐵𝑐𝑐𝑐𝑐 test. This confirms our results from  
Section 5.1 of our study of the test size, where it was examined assuming the absence 
of estimation risk and assuming the test being systematically oversized. After 
changing the forecasting scheme, this effect is still present. Therefore, we conclude 
that the use of asymptotic distribution is not recommended for this test. 
 Our conclusions about the influence of the parameter corrections on reducing the 
negative effects of estimation risk are important in terms of the practical applications 
of VaR tests. We demonstrate that most of the tests may be effectively implemented 
with asymptotic distributions without the need to apply simulation methods. This 
translates into the time needed for implementing the testing procedures. The time 



M. MAŁECKA    Estimation risk taking into consideration the effect of forecasting scheme...  21 

 

 

needed by subsampling for computational purposes is incomparably longer than the 
time needed for parameter corrections. What is more, the complexity associated 
with introducing parameter corrections into the estimation procedure is negligible 
compared to the complexity connected with the implementation of the subsampling 
technique. 

5.3. Power of VaR tests 

The power evaluation complements our study of test properties and serves to choose 
the procedures that are most effective in detecting incorrect VaR models. This part 
of our study focuses on the tests classified as well-sized and robust to estimation risk 
under a suitable forecasting scheme. These are: the Kupiec 𝐿𝐿𝑅𝑅𝑢𝑢𝑢𝑢𝐾𝐾 , the generalised 
Markov 𝐿𝐿𝑅𝑅𝑐𝑐𝑐𝑐

𝑀𝑀,𝑔𝑔𝑔𝑔𝑔𝑔, the geometric-VaR 𝐿𝐿𝑅𝑅𝑐𝑐𝑐𝑐
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑉𝑉𝑉𝑉𝑉𝑉, and the spectral 𝑆𝑆𝐷𝐷𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴 tests. 

 The power study we conduct involves various forms of distortions from the null 
which correspond to the construction of the considered tests. Since we examine both 
unconditional and conditional coverage tests, we need two types of alternatives. 
Moreover, in the class of the conditional coverage tests, some procedures (e.g. the 
spectral test) are designed mainly with the aim of testing the independence rather 
than the joint conditional coverage hypothesis. Their classification as conditional 
coverage tests follows from the inclusion of parameter 𝑝𝑝 in their statistics; however, 
intuitively, they exhibit low power against the incorrect unconditional coverage. To 
take into account all these cases, we evaluate the test power in a two-stage simulation 
study. The first set of experiments involves various violations of the unconditional 
coverage postulate, while the experiments carried out during the second stage are 
designed to violate the independence property exclusively (the unconditional 
coverage and independence properties jointly form the conditional coverage 
property). 
 Each stage of the power study consists of several variants characterised by 
different distances from the null. For experiments corresponding to the 
unconditional coverage hypothesis, these variants are implemented in a straight-
forward way through the manipulation of parameter 𝑝𝑝. This parameter is expressed 
as 𝑝𝑝 = 𝛿𝛿𝑝𝑝∗, where 𝑝𝑝∗ denotes the VaR coverage assumed under the null. The 
considered levels of 𝛿𝛿 are: 𝛿𝛿 = 0.5, 0.75, 1.25, 1.5. We report the results for  
𝑝𝑝∗ = 5%. 
 Measuring the distance from the null in experiments that violate the 
independence property requires us to change the representation of the return 
process from the 𝑡𝑡-GARCH to the 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁-GARCH. The latter model allows for the 
explicit measurement of the scale of the violation of the independence property by 
the scale of the volatility clustering. The volatility clustering, in turn, is quantified by 
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the autocorrelation of the squared returns. Under the normality assumption and the 
additional assumption of the existence of the fourth moment, the first-order 
autocorrelation of the squared returns in the GARCH(1,1) process is expressed 
analytically by 𝜌𝜌1 = 𝛼𝛼1 + 𝛼𝛼12𝛽𝛽1/(1− 2𝛼𝛼1𝛽𝛽1 − 𝛽𝛽12). The existence of the fourth 
moment can be verified by criterion (𝛼𝛼1 + 𝛽𝛽1)2 + 2𝛼𝛼12 < 1. If this criterion does not 
hold, the first-order autocorrelation behaves similarly to 𝜌𝜌1 = 𝛼𝛼1 + 𝛽𝛽1/3 (Ding  
& Granger, 1996), as has already been shown. Using the exact (when available) or 
approximate expressions for 𝜌𝜌1, we design the experiments to target the 𝜌𝜌1 levels: 
0.1, 0.2, 0.3 and 0.4. These levels are obtained by adjusting parameter 𝛼𝛼1 with 𝜔𝜔1 and 
𝛽𝛽1 fixed at the same levels as in the size study.10 
 The results of the first stage of the power study which examines the test 
effectiveness in discovering the incorrect unconditional VaR level are presented in 
Table 3. They clearly show that all of the tests were effective in completing the 
abovementioned task apart from one which proves unsuitable for this purpose,  
i.e. the spectral 𝑆𝑆𝐷𝐷𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴 test. Its poor performance can be explained by the way it is 
constructed. It is specifically designed for the purpose of testing the independence 
property, and based on the autocorrelation function. Only the inclusion of 
parameter 𝑝𝑝 allows this test to be classified as a conditional coverage test. However, 
it exhibits a feature common to all correlation-based tests, i.e. insensitivity to 
violations of unconditional moments.11 
 Out of the three tests performing well, one is the unconditional coverage test and 
the two others the conditional coverage tests. Thus, the two latter tests can 
potentially handle well both the violations of the unconditional VaR level and the 
violations of the independence property. According to our results, all three tests 
exhibit similar efficiency in detecting incorrect VaR levels. All of them show that the 
true VaR level amounting to 0.75 or 1.25 of the tested level cannot be effectively 
detected, while all tests become efficient if the true VaR reaches 0.5 or 1.5 of the 
tested value. Usually samples of 500 observations are sufficiently long, but the 
sample length of 1,000 gives the power of at least 0.8 in all the cases. 
 
 
 
 

 
10 Such experiments enable us to study the power as a function of the distribution parameter. In this way 

we improve the existing studies, which are based on arbitrarily chosen GARCH-model-based alternatives 
(single or multiple), without any information about the distance from the null. Although various 
alternatives that have more complex representations might perform better at describing real financial 
processes, we believe they are less suitable for the purpose of the power study. 

11 This feature is also exhibited by the Ljung-Box 𝐿𝐿𝐵𝐵𝑐𝑐𝑐𝑐 test; however, we do not discuss it here – we 
excluded it from this part of the study for other reasons. 
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Table 3. Estimates of the power of VaR tests against incorrect unconditional coverage 

Series 
length 

𝐿𝐿𝑅𝑅𝑢𝑢𝑢𝑢𝐾𝐾  𝐿𝐿𝑅𝑅𝑐𝑐𝑐𝑐
𝑀𝑀,𝑔𝑔𝑔𝑔𝑔𝑔 

distance from the null measured by 𝛿𝛿 

0.5 0.75 1.25 1.5 0.5 0.75 1.25 1.5 

    250  ........................ 0.566 0.173 0.163 0.404 0.444 0.119 0.110 0.297 
    500  ........................ 0.875 0.307 0.210 0.624 0.736 0.195 0.183 0.547 
    750  ........................ 0.959 0.391 0.336 0.833 0.913 0.299 0.253 0.734 
1,000  ........................ 0.992 0.514 0.392 0.896 0.971 0.363 0.320 0.839 
1,250  ........................ 0.998 0.608 0.476 0.951 0.992 0.447 0.382 0.918 
1,500  ........................ 1.000 0.670 0.545 0.978 0.998 0.541 0.460 0.957 

(cont.) 

Series 
length 

𝐿𝐿𝑅𝑅𝑐𝑐𝑐𝑐
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑉𝑉𝑉𝑉𝑉𝑉 𝑆𝑆𝐷𝐷𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴 

distance from the null measured by 𝛿𝛿 

0.5 0.75 1.25 1.5 0.5 0.75 1.25 1.5 

    250  ........................ 0.508 0.155 0.087 0.254 0.073 0.059 0.048 0.050 
    500  ........................ 0.784 0.233 0.148 0.483 0.067 0.056 0.055 0.059 
    750  ........................ 0.931 0.345 0.211 0.685 0.061 0.052 0.055 0.059 
1,000  ........................ 0.978 0.413 0.291 0.808 0.055 0.051 0.057 0.055 
1,250  ........................ 0.994 0.504 0.357 0.904 0.052 0.044 0.050 0.052 
1,500  ........................ 0.998 0.572 0.414 0.943 0.047 0.044 0.055 0.057 

Note. All power results in the table assume testing a 5% VaR. 
Source: author’s calculations. 

 
 The results of examining the power against violations of the independence 
property, presented in Table 4, show that all tests admitted to this part of the study 
seem to cope well with this issue. For example, if the sample size is at least 500, all 
the tests can detect, with the power of over 0.7, the violations of the independence 
corresponding to the volatility clustering at the level of 0.2. This level corresponds to 
the level of 0.2 of the autocorrelation coefficient of the squared returns in the 
violation process. The Markov 𝐿𝐿𝑅𝑅𝑐𝑐𝑐𝑐

𝑀𝑀,𝑔𝑔𝑔𝑔𝑔𝑔 and the geometric-VaR 𝐿𝐿𝑅𝑅𝑐𝑐𝑐𝑐
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑉𝑉𝑉𝑉𝑉𝑉 tests 

exhibit outstanding performance with short samples. In their cases, the power of 
over 0.7 is attainable with the shortest examined samples (250 observations). The 
spectral 𝑆𝑆𝐷𝐷𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴 test seems to require slightly longer samples, but in this case, the 
power of 0.7 is attainable starting from 500 observations. 
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Table 4. Estimates of the power of VaR tests against violations of independence property 

Series 
length 

𝐿𝐿𝑅𝑅𝑢𝑢𝑢𝑢𝐾𝐾  𝐿𝐿𝑅𝑅𝑐𝑐𝑐𝑐
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑉𝑉𝑉𝑉𝑉𝑉 𝑆𝑆𝐷𝐷𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴 

distance from the null measured by 𝜌𝜌1 

0.1 0.2 0.3 0.4 0.5 0.75 1.25 1.5 0.5 0.75 1.25 1.5 

    250  .................  0.285 0.551 0.715 0.799 0.287 0.594 0.764 0.849 0.282 0.476 0.555 0.579 
    500  .................  0.410 0.766 0.907 0.959 0.433 0.826 0.948 0.985 0.447 0.726 0.810 0.823 
    750  .................  0.548 0.902 0.978 0.994 0.584 0.943 0.993 0.999 0.579 0.868 0.922 0.927 
1,000  .................  0.624 0.951 0.994 0.999 0.679 0.980 0.999 1.000 0.655 0.928 0.966 0.967 
1,250  .................  0.718 0.981 0.999 1.000 0.780 0.994 1.000 1.000 0.741 0.965 0.985 0.987 
1,500  .................  0.791 0.992 1.000 1.000 0.836 0.999 1.000 1.000 0.793 0.981 0.993 0.994 

Note. All power results in the table assume testing a 5% VaR. 
Source: author’s calculations. 

6. Conclusions 

VaR testing procedures are a part of the global banking supervisory system. 
Originally, these procedures were developed with the use of theoretical asymptotic 
distributions. However, the approach based on theoretical distributions has been 
questioned since 2010, when estimation risk was first considered in the context of 
the VaR testing framework. It was argued that estimation risk disturbed the 
convergence of the distributions of test statistics to their standard asymptotic 
distributions. Thus, the replacement of the asymptotic distributions with those 
obtained by means of resampling methods was proposed as a remedy to the 
aforementioned issue. 
 While agreeing with the argument that estimation risk disturbs the convergence 
to the asymptotic distributions, we raised the question of whether the proposed 
solution was the best possible. We recalled the results from previous studies which 
have also been confirmed by our research, demonstrating that the accuracy of the 
tests corrected with resampling methods was still not satisfactory. We also indicated 
that all previous studies were based on a simplified assumption that the VaR 
estimates were obtained by means of the fixed forecasting scheme. This assumption 
had a large impact on the results, as, by definition, this type of forecasting schemes 
generate the largest estimation risk. Therefore, we argued that these results could not 
be generalised. 
 To examine the ways of dealing with estimation risk, we waived the assumption of 
the fixed forecasting scheme and studied more realistic ones – the rolling and the 
recursive schemes. Our results altered the conclusions from the previous studies. We 
showed that under the more realistic forecasting schemes, the loss of accuracy due to 
the use of resampled distributions exceeded the loss of accuracy resulting from the 
occurrence of estimation risk. Therefore, for the sake of accuracy in VaR testing, it is 
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better to rely on asymptotic distributions and minimise the influence of estimation 
errors by a suitable forecasting scheme than to use resampling methods. 
 Our approach has two more advantages, which seem important in the practical 
applications of VaR testing. The methods we proposed are much more time-efficient 
and do not require designing simulations to conduct a VaR test. They are, therefore, 
optimal from the point of view of real business operations. 
 Apart from the above general conclusions about dealing with the issue of 
estimation risk, our contribution to the undertaken subject also provides a broad 
comparison of the VaR testing methods, belonging to six distinct classes. To the best 
of our knowledge, this paper is the first to present such a comparison involving 
estimation risk. We selected the VaR tests that fulfil three optimality postulates: the 
tests are well-sized in finite samples when based on asymptotic distributions, they 
are robust to estimation risk, and the most efficient in detecting incorrect VaR 
models. Two conditional coverage tests turned out to be most satisfactory in the 
light of the postulates listed above – the generalised Markov 𝐿𝐿𝑅𝑅𝑐𝑐𝑐𝑐

𝑀𝑀,𝑔𝑔𝑔𝑔𝑔𝑔 and the 
geometric-VaR 𝐿𝐿𝑅𝑅𝑐𝑐𝑐𝑐

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑉𝑉𝑉𝑉𝑉𝑉 tests. They are both accurately sized and exhibit similar, 
outstanding results in terms of their power. The 𝐿𝐿𝑅𝑅𝑐𝑐𝑐𝑐

𝑀𝑀,𝑔𝑔𝑔𝑔𝑔𝑔 test prevailed in robustness 
to estimation risk, thus this procedure proved best. 
 Both the above-mentioned tests, being of the conditional coverage type, allow for 
the joint testing of the unconditional coverage and independence postulates. 
Another procedure appearing to perform exceptionally well in all the aspects was the 
spectral 𝑆𝑆𝐷𝐷𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴 test. However, it is dedicated to testing the independence property 
solely and has no power against incorrect unconditional coverage. Therefore, it may 
be used only together with an unconditional coverage test. An unconditional 
coverage test that fulfils all our postulates is the 𝐿𝐿𝑅𝑅𝑢𝑢𝑢𝑢𝐾𝐾  Kupiec test. Thus, the 
approach based on the Kupiec and spectral tests seems equivalent to the one based 
on the generalised Markov procedure. All these procedures may be effectively 
implemented with the use of asymptotic distributions, provided that VaR forecasting 
is conducted with a suitable forecasting scheme. 
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