Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 22 | 3 |
Tytuł artykułu

Peculiarities of pelagic community metabolism in small dimictic lakes as demonstrated by daily changes of oxygen vertical distribution

Warianty tytułu
Języki publikacji
Our paper presents daily fluctuations in the concentration of oxygen in two small moderately eutrophied lakes in the Bytowskie Lake District (northern Poland), measured with the aid of a manually operated oxygen and temperature probe. Based on the results of these measurements, gross primary production, respiration, and net production of the ecosystem were calculated. It was observed that rhythmic changes in oxygen concentrations occurred in the epilimnion and – under favorable conditions – also in the upper part of the metalimnion. However, changes in the concentration of oxygen due to biological processes in the metalimnion were compounded by fluctuations caused by internal seiches, especially in shallower sites closer to the lake shores. In May and July the reach of the production layer coincided with the isopleth of 100% saturation with oxygen and, apart from the epilimnion, also encompassed the upper part of the metalimnion. In May, when the thermocline was particularly shallow, much of the primary production and respiration took place in the metalimnion.
Słowa kluczowe
Opis fizyczny
  • Institute of Biology and Environmental Protection, Pomeranian Academy in Słupsk, Arciszewskiego 22b, 76-200 Słupsk, Poland
  • Institute of Biology and Environmental Protection, Pomeranian Academy in Słupsk, Arciszewskiego 22b, 76-200 Słupsk, Poland
  • Institute of Biology and Environmental Protection, Pomeranian Academy in Słupsk, Arciszewskiego 22b, 76-200 Słupsk, Poland
  • 1. WINBERG G.G. Experience gained by investigations of photosynthesis and respiration in lake water mass, Tr. Limnol. Stancii w Kosinie, 18, 5, 1934 [In Russian].
  • 2. ODUM H.T. Trophic structure and productivity of Silver Springs, Florida, Ecol. Monogr., 27, 55, 1957.
  • 3. VOLLENWEIDER R.A. A manual on methods for measuring primary production in aquatic environments, IBP Handbook No. 12. Blackwell Scientific, Oxford, U.K, pp. 225 1974.
  • 4. ŻADIN W.I. Hydrobiological Analyses, Gosudarstwiennoje Izdatielstwo Wysszaja Szkoła, Moskwa, 1960, [In Russian].
  • 5. WETZEL R.G., LINKENS G.E. Limnological Analyses, Springer, New York, NY, USA pp. 391, 1991.
  • 6. STEEMAN NIELSEN E. The use of radioactive carbon (C14) for measuring organic production in the sea, J. Cons. Int. Explor. Mer, 18, 117, 1952.
  • 7. SOROKIN J.I. On the use of ¹⁴C for the study of primary production in the aquatic environment, Trans. Hydrobiol. Soc. USRR, 7, 271, 1956 [In Russian].
  • 8. STAEHR P.A. TESTA J.M., KEMP W.M., COLE J.J., SAND-JENSEN K., SMITH S.V. The metabolism of aquatic ecosystems: history, applications, and future challenges, Aquatic Science, 74, 15, 2012.
  • 9. WANNINKHOF R. Relationship between wind speed and gas exchange over the ocean, J. Geophys. Res., 97, 7373, 1992.
  • 10. COLE J.J., CARACO. N.F. Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6, Limnol. Oceanogr., 43, 647, 1998.
  • 11. COLE J.J., PACE M.L., CARPENTER S.R., KITCHELL J.F. Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations, Limnol. Oceanogr., 45, 1718, 2000.
  • 12. FUKUSHIMA T., MATSUSHIGE K., WEISBURD R.S.J. Characteristics of nighttime respiration in outdoor mesocosms, Limnology, 1, 159, 2000.
  • 13. STAEHR P.A., SAND-JENSEN K. Temporal dynamics and regulation of lake metabolism, Limnol. Oceanogr., 52, 108, 2007.
  • 14. GELDA R.K., EFFLER S.W. Metabolic rate estimates for a eutrophic lake from diel dissolved oxygen signals, Hydrobiologia, 485, 51, 2002.
  • 15. REEDER B.C., BINION B.M. Comparison of methods to assess water column primary production in wetlands, Ecol. Eng., 17, 445, 2001.
  • 16. BEAHR M.M., DeGRANDPRE M.D. In situ pCO₂ and O₂ measurements in a lake during turnover and stratification: Observations and modeling, Limnol. Oceanogr. 49, (2), 330, 2004.
  • 17. SADRO S., MELACK J.M., MacINTYLE S. Spatial and temporal variability in the ecosystem metabolism of highelevation lake: integrating benthic and pelagic habitats, Ecosystems, DOI:10.1007/s10021-011-9471-5, 2011.
  • 18. COLOSO J.J., COLE J.J, PACE M.L. Short-term variation in thermal stratification complicates estimation of lake metabolism, 73, 305, 2011.
  • 19. BENDER M., GRANDE K., JOHNSON K., MARRA J., WILLIAMS P.J., SIEBURTH J., PILSON M., LANGDON C., HITCHCOCK G., ORCHARDO J., BLUNT C., DONAGHAY P., HEINEMANN K. A comparison of four methods for determining planktonic community production, Limnol. Oceanogr., 32, 1085, 1987.
  • 20. STAEHR P.A., BADE D., VAN DE BOGERT M.C., KOCH G.R., WILLIAMSON C., HANSON P., COLE J.J., KRATZ T. Lake metabolism and the diel oxygen technique: State of the science, Limnol. Oceanogr., Methods 8, 628, 2010.
  • 21. KRASKA M., SZYPER H., ROMANOWICZ W. Water trophy of 37 lobelian lakes of the Tuchola Forest and of the Bytów Lake District, Idee Ekologiczne, Seria Szkice, 6, 135, 1994 [In Polish].
  • 22. NOWIŃSKI K., PACEWICZ K. Physical-limnological properties of easternmost and southern most lobelia lakes in Poland, Limnological Review, 6, 207, 2006.
  • 23. SZAŃKOWSKI M., KŁOSOWSKI S. Habitat variability of the Littorelletea uniflorae plant communities in Polish Lobelia lakes, Hydrobiologia, 570, 117, 2006.
  • 24. FREE G., BOWMAN J., McGARRIGLE M., CARONI R., DONNELLY K., TIERNEY D., TRODD W., LITTLE R. The identification, characterization and conservation value of isoetid lakes in Ireland, Aquat. Conserv., 19, 264, 2009.
  • 25. FRICKER P.D., NEPF H.M. Bathymetry, stratification, and internal seiche structure, J. Geophys. Res., 105, 14237, 2000.
  • 26. MÜNNICH M., WÜEST A., IMBODEN D.M. Observations of the second vertical mode of the internal seiche in an alpine lake, Limnol. Oceanogr., 37, 1705, 1992.
  • 27. JAROSIEWICZ A., WITEK Z. Seasonal translocations of nitrogen and phosphorus in two lobelian lakes in the vicinity of Bytów, (West Pomeranian Lake District), Pol. J. Environ. Stud., 18, 827, 2009.
  • 28. VAN DE BOGERT M.C., CARPENTER S.R., COLE J.J., PACE M.L. Assessing pelagic benthic metabolism using free water measurements, Limnol. Oceanogr., Methods, 5, 145, 2007.
  • 29. HANSON P.C., CARPENTER S.R., KIMURA N., WU C., CORNELIUS S.P., KRATZ T.K. Evaluation of metabolism models for free-water dissolved oxygen methods in lakes, Limnol. Oceanogr. Methods, 6, 454, 2008.
  • 30. JENG-WEI TSAI, KRATZ T.K., HANSON P.C., JIUNNTZONG WU, CHANG W.Y.B., ARZBERGER P.W., BING-SHIH LIN, FANG-PANG LIN, HSIU-MEI CHOU, CHIH-YU CHIU. Seasonal dynamics, typhoons and the regulation of lake metabolism in a subtropical humic lake, Freshwater Biol., 53, 1929, 2008.
  • 31. STAEHR P.A., BAASTRUP-SPOHR L., SAND-JENSEN K., STEDMAN. Lake metabolism scales with lake morphometry and catchment conditions, Aquat. Sci., 74, 155, 2012.
  • 32. COLOSO J.J., COLE J.J., HANSON P.C., PACE M.L. Depth-integrated, continuous estimates of metabolism in a clear-water lake, Can. J. Fish. Aqua. Sci., B, 712, 2008.
  • 33. WITEK Z., JAROSIEWICZ A. The oxygen budget of two closed, dimictic lakes in the vicinity of Bytów (West Pomeranian Lake District, northern Poland), Oceanological and Hydrobiological Studies, 39, 135, 2010.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.