PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 85 | 2 |

Tytuł artykułu

Genetic diversity of Dactylorhiza incarnata (Orchidaceae) in northern Poland

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The genetic structure of Dactylorhiza incarnata var. incarnata populations is shaped not only by historical events such as recolonization after ice sheet retreat or limited seed and pollen dispersal, but also the bottleneck effect. During the last decade, D. incarnata var. incarnata has also experienced a strong decline in population numbers and sizes, due to habitat loss and fragmentation. In the present research genetic diversity was examined in eight populations located in northern Poland, using six nuclear microsatellites loci. At the species level our results showed a moderate mean level of genetic diversity (A = 4.67; Ae = 2.73; Rs = 4.48; Ho = 0.438; FIS = 0.224), which varied among the studied populations (A: 2.17–3.67; Ae: 1.55–2.69; Rs: 1.31–1.61; Ho: 0.292–0.631; FIS: −0.283–0.340). A considerable overabundance of homozygotes was detected in four populations (FIS within the range of 0.067–0.340), and in the remaining populations an excess of heterozygotes was observed. The average apparent out-crossing rate was also calculated (ta = 0.980), and primarily indicated a tendency to out-cross within the species. Moderate genetic differentiation was found among the studied populations (FST = 0.149; RST = 0.174; p < 0.05). The differentiation of the populations corresponded to relatively low gene flow value (Nm = 0.426) among populations, which amounted to only one migrant every second generation.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

85

Numer

2

Opis fizyczny

Article 3496 [14p.], fig.,ref.

Twórcy

autor
  • Department of Molecular Evolution, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
  • Department of Genetics, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
autor
  • Department of Molecular Evolution, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland

Bibliografia

  • 1. Young AG, Boyle T, Brown T. The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol. 1996;11:413–419. http://dx.doi.org/10.1016/0169-5347(96)10045-8
  • 2. Manel S, Schwartz MK, Luikart G, Taberlet P. Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol. 2003;18:189–197. http://dx.doi.org/10.1016/S0169-5347(03)00008-9
  • 3. Leimu R, Mutikainen P, Koricheva J, Fischer M. How general are positive relationships between plant population size, fitness, and genetic variation? J Ecol. 2006;5:942–952. http://dx.doi.org/10.1111/j.1365-2745.2006.01150.x
  • 4. Jacquemyn H, Brys R, Hermy M, Willems JH. Does nectar reward affect rarity and extinction probabilities of orchid species? An assessment using historical records from Belgium and the Netherlands. Biol Conserv. 2005;121:257–263. http://dx.doi.org/10.1016/j.biocon.2004.05.002
  • 5. Hamrick JL, Godt MJW. Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kehler AC, Weir BS, editors. Plant population genetics, breeding, and genetic resources. Sunderland, MA: Sinauer; 1989.
  • 6. Tremblay RL, Ackerman JD, Zimmerman JK, Calvo RN. Variation in sexual reproduction in orchids and its evolutionary consequences: a spasmodic journey to diversification. Biol J Linn Soc. 2005;84:1–54. http://dx.doi.org/10.1111/j.1095-8312.2004.00400.x
  • 7. Sun M, Wong KC. Genetic structure of three orchid species with contrasting breeding systems using RAPD and allozyme markers. Am J Bot. 2001;88:2180–2188. http://dx.doi.org/10.2307/3558379
  • 8. Hedrén M. Genetic differentiation, polyploidization and hybridization in Northern European Dactylorhiza (Orchidaceae): evidence from allozyme markers. Plant Syst Evol. 1996;201:31–55. http://dx.doi.org/10.1007/BF00989050
  • 9. Hedrén M, Fay MF, Chase MW. Amplified fragment length polymorphisms (AFLP) reveal details of polyploid evolution in Dactylorhiza (Orchidaceae). Am J Bot. 2001;88:1868–1880. http://dx.doi.org/10.2307/3558363
  • 10. Devos N, Tyteca D, Raspé O, Wesselingh RA, Jacquemart AL. Patterns of chloroplast diversity among Western European Dactylorhiza species (Orchidaceae). Plant Syst Evol. 2003;243:85–97. http://dx.doi.org/10.1007/s00606-003-0068-0
  • 11. Hedrén M. Plastid DNA variation in the Dactylorhiza incarnata/maculata polyploid complex and origin of allotetraploid D. sphagnicola (Orchidaceae). Mol Ecol. 2003;12:2669–2680. http://dx.doi.org/10.1046/j.1365-294X.2003.01930.x
  • 12. Pillon Y, Fay MF, Hedrén M, Bateman RM, Devey DS, Shipunov AB, et al. Evolution and temporal diversification of Western European polyploid species complexes in Dactylorhiza (Orchidaceae). Taxon. 2007;56:1185–1208. http://dx.doi.org/10.2307/25065911
  • 13. Devos N, Oh SH, Raspé O, Jacquemart AL, Manos PS. Nuclear ribosomal DNA sequence variation and evolution of spotted marsh-orchids (Dactylorhiza maculata group). Mol Phylogenet Evol. 2005;36:568–580. http://dx.doi.org/10.1016/j.ympev.2005.04.014
  • 14. Hedrén M. Notes on the esterase variation in Swedish Dactylorhiza incarnata s.l. (Orchidaceae). Nord J Bot. 1996;16:253–256. http://dx.doi.org/10.1111/j.1756-1051.1996.tb00225.x
  • 15. Pedersen HÆ. Allozyme variation and genetic integrity of Dactylorhiza incarnata (Orchidaceae). Nord J Bot. 1998;18:15–21. http://dx.doi.org/10.1111/j.1756-1051.1998.tb01091.x
  • 16. Pedersen HÆ. Apochromic populations of Dactylorhiza incarnata s.l. (Orchidaceae): diversity and systematic significance as revealed by allozyme markers and morphology. Bot J Linn Soc. 2009;159:396–407. http://dx.doi.org/10.1111/j.1095-8339.2009.00954.x
  • 17. Hedrén M, Nordström S. Polymorphic populations of Dactylorhiza incarnata s.l. (Orchidaceae) on the Baltic island on Gotland: morphology, habitat preference and genetic differentiation. Ann Bot. 2009;104:527–542. http://dx.doi.org/10.1093/aob/mcp102
  • 18. Piękoś-Mirkowa H, Mirek Z. Flora Polski. Atlas roślin chronionych. Warszawa: MULTICO Oficyna Wydawnicza; 2003.
  • 19. Minasiewicz J, Tukałło P, Trzepanowska K. Dactylorhiza incarnata (L.) Soó w regionie gdańskim – zmienność morfologiczna i genetyczna populacji oraz stan zachowania stanowisk. Acta Botanica Cassubica. 2004;4:139–160.
  • 20. Zarzycki K, Szeląg Z. Czerwona lista roślin naczyniowych zagrożonych w Polsce. In: Zarzycki K, Wojewoda W, Heinrich Z, editors. Lista roślin zagrożonych w Polsce. Cracow: W. Szafer Institute of Botany, Polish Academy of Sciences; 1992. p. 87–98.
  • 21. Chase MW, Hills HH. Silica gel: an ideal material for field preservation of leaf samples for DNA studies. Taxon. 1991;40:215–220. http://dx.doi.org/10.2307/1222975
  • 22. Bekesiova I, Nap JP, Mlynarova L. Isolation of high quality DNA and RNA from leaves of the carnivorous plant Drosera rotundifolia. Plant Mol Biol Report. 1999;17:269–277. http://dx.doi.org/10.1023/A:1007627509824
  • 23. Nordström S, Hedrén M. Development of polymorphic nuclear microsatellite markers for polyploid and diploid members of the orchid genus Dactylorhiza. Mol Ecol Notes. 2007;7:644–647. http://dx.doi.org/10.1111/j.1471-8286.2006.01662.x
  • 24. Petit RJ, El Mousadik A, Pons O. Identifying populations for conservation on the basis of genetic markers. Conserv Biol. 1998;12:844–855. http://dx.doi.org/10.1111/j.1523-1739.1998.96489.x
  • 25. Widmer A, Lexer C. Glacial refugia: sanctuaries for allelic richness, but not for gene diversity. Trends Ecol Evol. 2001;16:267–269. http://dx.doi.org/10.1016/S0169-5347(01)02163-2
  • 26. Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984;38:1358–1370. http://dx.doi.org/10.2307/2408641
  • 27. Weir BS. Genetic data analysis II: methods for discrete population genetic data. Sunderland, MA: Sinauer; 1996.
  • 28. Guo SW, Thompson EA. Performing the exact test of Hardy–Weinberg proportion for multiples allele. Biometrics. 1992;48:361–372. http://dx.doi.org/10.2307/2532296
  • 29. Rousset F. GENEPOP’007: a complete reimplementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour. 2008;8:103–106. http://dx.doi.org/10.1111/j.1471-8286.2007.01931.x
  • 30. Goudet J. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3) [Internet]. 2001 [cited 2016 Apr 27]. Available from: http://www2.unil.ch/popgen/softwares/fstat.htm
  • 31. Slatkin M. A measure of population subdivision based on microsatellite allele frequency. Genetics. 1995;139:457–462.
  • 32. Barton NH, Slatkin M. A quasi-equilibrium theory of the distribution of rare alleles in a subdivided population. Heredity. 1986;56:409–415. http://dx.doi.org/10.1038/hdy.1986.63
  • 33. Gower JC. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika. 1966;53:325–338. http://dx.doi.org/10.2307/2333639
  • 34. Hammer Ř, Harper DAT, Ryan PD. PAST: paleontological statistics software package for education and data analysis. Palaeontol Electronica. 2011;4:1–9.
  • 35. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–959.
  • 36. Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics. 2003;164:1567–1587.
  • 37. Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14:2611–2620. http://dx.doi.org/10.1111/j.1365-294X.2005.02553.x
  • 38. Earl DA, vonHoldt BM. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour. 2012;4:359–361. http://dx.doi.org/10.1007/s12686-011-9548-7
  • 39. Cornuet JM, Luikart G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics. 1997;144:2001–2014.
  • 40. Kimura M, Ohta T. Stepwise mutation model and distribution of allelic frequencies in a finite population. Proc Natl Acad Sci USA. 1978;75:2868–2872. http://dx.doi.org/10.1073/pnas.75.6.2868
  • 41. Hedrén M. Speciation patterns in the Dactylorhiza incarnata/maculata polyploid complex (Orchidaceae): evidence from molecular markers. Journal Europäischer Orchideen. 2002;34:707–731.
  • 42. Minasiewicz J. Zmienność morfologiczna i genetyczna populacji wybranych gatunków Dactylorhiza Necker ex Nevski sekcji Dactylorhiza (Orchidaceae) w Polsce [PhD thesis]. Gdańsk: Uniwersytet Gdański; 2001.
  • 43. Hewitt GM. Some genetic consequences of ice ages, and their role in divergence and speciation. Bot J Linn Soc. 1996;58:247–276. http://dx.doi.org/10.1111/j.1095-8312.1996.tb01434.x
  • 44. Hedrén M. Systematics of the Dactylorhiza euxina/incarnata/maculata polyploid complex (Orchidaceae) in Turkey: evidence from allozyme data. Plant Syst Evol. 2001;229:23–44. http://dx.doi.org/10.1007/s006060170016
  • 45. Hedrén M. Plastid DNA haplotype variation in Dactylorhiza incarnata (Orchidaceae): evidence for multiple independent colonization. Nord J Bot. 2009;27:69–80. http://dx.doi.org/10.1111/j.1756-1051.2009.00274.x
  • 46. Scacchi R, de Angelis G, Corbo RM. Effect of the breeding system on the genetic structure in three Cephalanthera spp. (Orchidaceae). Plant Syst Evol. 1991;176:53–61. http://dx.doi.org/10.1007/BF00937945
  • 47. Vallius E, Salonen V, Kull T. Factors of divergence in co-occurring varieties of Dactylorhiza incarnata (Orchidaceae). Plant Syst Evol. 2004;248:177–189. http://dx.doi.org/10.1007/s00606-004-0192-5
  • 48. Wojciechowicz P, Żuk A. Badania eksperymentalne nad rozmnażaniem Dactylorhiza incarnata (L.) Soó [PhD thesis]. Gdańsk: Uniwersytet Gdański; 2003.
  • 49. de Hert K, Jacquemyn H, van Glabeke S, Roldán-Ruiz I, Vandepitte K, Leus L, et al. Patterns of hybridization between diploid and derived allotetraploid species of Dactylorhiza (Orchidaceae) co-occurring in Belgium. Am J Bot. 2011;98:946–955. http://dx.doi.org/10.3732/ajb.1000367
  • 50. Clegg MT. Measuring plant mating systems. BioScience. 1980;30:814–818. http://dx.doi.org/10.2307/1308373
  • 51. Bos I, Caligari P. Selection methods in plant breeding. Dordrecht: Springer; 2008. http://dx.doi.org/10.1007/978-1-4020-6370-1
  • 52. Vogler DW, Kalisz S. Sex among the flowers: the distribution of plant mating systems. Evolution. 2001;55:202–204. http://dx.doi.org/10.1111/j.0014-3820.2001.tb01285.x
  • 53. Goodwillie C, Kalisz S, Eckert CG. The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Annu Rev Ecol Evol Syst. 2005;36:47–79. http://dx.doi.org/10.1146/annurev.ecolsys.36.091704.175539
  • 54. Levin DA, Kerster HW. Gene flow in seed plants. Evol Biol. 1974;7:139–220. http://dx.doi.org/10.1007/978-1-4615-6944-2_5
  • 55. Vandepitte K, Gristina AS, de Hert K, Meekers T, Roldán-Ruiz I, Honnay O. Recolonization after habitat restoration leads to decreased genetic variation in populations of a terrestrial orchid. Mol Ecol. 2012;21:4206–4215. http://dx.doi.org/10.1111/j.1365-294X.2012.05698.x
  • 56. Hardy OJ, Charbonnel N, Fréville H, Heuertz M. Microsatellite allele sizes: a simple test to assess their significance on genetic differentiation. Genetics. 2003;163:1467–1482.
  • 57. Rousset F. Equilibrium values of measure of population subdivision for stepwise mutation process. Genetics. 1996;142:1357–1362.
  • 58. Haberl M, Tautz D. Comparative allele sizing can produce inaccurate allele size differences for microsatellites. Mol Ecol. 1999;8:1347–1350. http://dx.doi.org/10.1046/j.1365-294X.1999.00692.x
  • 59. Hamrick JL, Godt MJW, Sherman-Broyles SL. Gene flow among plants populations: evidence from genetic markers. In: Hoch PC, Stephenson AG, editors. Experimental and molecular approaches to plant biosystematics. Saint Louis, MO: Missouri Botanical Garden; 1995. p. 215–232.
  • 60. Slatkin M. Gene flow in natural populations. Annu Rev Ecol Evol Syst. 1985;16:393–430. http://dx.doi.org/10.1146/annurev.ecolsys.16.1.393
  • 61. Dramstad WE. Do bumblebees (Hymenoptera, Apidae) really forage close to their nests? J Insect Behav. 1996;9:163–182. http://dx.doi.org/10.1007/BF02213863
  • 62. Trapnell DW, Hamrick JL. Partitioning nuclear and chloroplast variation at multiple spatial scales in the neotropical epiphytic orchid, Laelia rubescens. Mol Ecol. 2004;13:2655–2666. http://dx.doi.org/10.1111/j.1365-294X.2004.02281.x
  • 63. Chung MY, Nason JD, Chung MG. Spatial genetic structure in populations of the terrestrial orchid Cephalanthera longibracteata (Orchidaceae). Am J Bot. 2004;91:52–57. http://dx.doi.org/10.3732/ajb.91.1.52
  • 64. Machon N, Bardin P, Mazer S, Moret J, Godelle B, Austerlitz F. Relationship between genetic structure and seed and pollen dispersal in the endangered orchid Spiranthes spiralis. New Phytol. 2003;157:677–687. http://dx.doi.org/10.1046/j.1469-8137.2003.00694.x
  • 65. Brundrett MC, Scade A, Batty AL, Dixon KW, Sivasithamparam K. Development of in situ and ex situ seed baiting techniques to detect mycorrhizal fungi from terrestrial orchid habitats. Mycol Res. 2003;107:1210–1220. http://dx.doi.org/10.1017/S0953756203008463
  • 66. Sokal RR, Wartenberg DE. A test of spatial autocorrelation analysis using an isolation-by-distance model. Genetics. 1983;105:219–237.
  • 67. Brzosko E, Wróblewska A, Tałałaj I. Genetic variation and genotypic diversity in Epipactis helleborine populations in NE Poland. Plant Syst Evol. 2004;248:57–69. http://dx.doi.org/10.1007/s00606-004-0140-4
  • 68. Wright S. The genetical structure of populations. Ann Eugen. 1951;15:323–354. http://dx.doi.org/10.1111/j.1469-1809.1949.tb02451.x
  • 69. Ellstrand NC, Elam DR. Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst. 1993;24:217–242. http://dx.doi.org/10.1146/annurev.es.24.110193.001245
  • 70. Rathcke BJ, Jules ESJ. Habitat fragmentation and plant-pollinator interactions. Current Sci. 1993;65:273–277.
  • 71. Gustafsson S. Patterns of genetic variation in Gymnadenia conopsea, the fragmented orchid. Mol Ecol. 2000;9:1863–1872. http://dx.doi.org/10.1046/j.1365-294x.2000.01086.x

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-093e8a40-e221-427e-a0e3-aa52aefe848c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.