PL
Celem pracy było określenie wpływu różnych technik ogrzewania oraz zamrażania, rozmrażania i zamrażalniczego przechowywania na właściwości przeciwutleniające homogenatów z owoców jagodowych. Materiał do badań stanowiły homogenaty owocowe: truskawkowy, z czarnej porzeczki, aroniowy i żurawinowy. Surowce poddano obróbce termicznej: ogrzewaniu (z zastosowaniem kuchenki gazowej, mikrofalowej i urządzenia wielofunkcyjnego Thermomix) i zamrażaniu. Zamrożone próbki przechowywano w temp. -24 ºC: 1) przez 3 dni – w celu określenia wpływu procesu zamrażania na właściwości przeciwutleniające homogenatów, 2) przez 90 dni – w celu określenia wpływu zamrażalniczego przechowywania na te właściwości. Przed badaniem próbki rozmrażano w powietrzu (temp. ok. 21 ºC) i w kuchence mikrofalowej. W surowcach oznaczono zawartość witaminy C, siłę redukującą i zdolność neutralizowania wolnych rodników. Najwięcej witaminy C zawierał homogenat z czarnej porzeczki (6,4 mg/g s. m.), a najwyższą zdolnością redukującą charakteryzował się homogenat truskawkowy (670,2 mg kwasu askorbinowego/g s. m.). Homogenaty aroniowe poddane obróbce termicznej były najefektywniejszym neutralizatorem wolnych rodników (EC50 = 1,52 g s. m./g DPPH•). Temperatura powyżej 95 ºC spowodowała największe straty witaminy C w homogenacie z czarnej porzeczki, przy czym były one mniejsze w wyniku ogrzewania mikrofalowego niż tradycyjnego. Ogrzewanie wpłynęło na wzrost właściwości redukujących i zdolności neutralizowania wolnych rodników, przy czym był on większy podczas podgrzewania metodą tradycyjną. W wyniku zamrażalniczego składowania nastąpiło zmniejszenie zawartości witaminy C i zdolności neutralizowania wolnych rodników (DPPH•). W przypadku siły redukującej wynik przechowywania zależał od surowca. W homogenatach z czarnej porzeczki i truskawki zaobserwowano zmniejszenie siły redukującej, a w żurawinowych i aroniowych - jej wzrost.
EN
The objective of the research study was to determine the effect of various heating and freezing techniques, as well as of the defrosting and frozen storage on the antioxidant properties of berry fruit homogenates. The experimental material consisted of strawberry, blackcurrant, cranberry, and chokeberry homogenates. The raw material was thermally treated, i.e. it was heated (using a gas stove, a microwave oven, and a Thermomix multifunction device) and frozen. The frozen samples were stored at a temperature of -24 ºC: 1) for 3 days, to determine the effect of freezing process on the antioxidant properties of homogenates; 2) for 90 days to determine the effect of frozen storage on those properties. Prior to the analysis, the samples were defrosted in air (at a temperature of approx. 21 ºC) and in a microwave oven. In the raw material, there were assayed: content of vitamin C, reducing power, and ability to scavenge free radicals. The blackcurrant homogenate contained the highest amount of vitamin C (6.4 mg/g of dry matter), whereas the strawberry homogenate was characterized by the highest reducing capability (670.2 mg of ascorbic acid/g of dry matter). The thermally treated chokeberry homogenates were the most effective scavengers of free radicals (EC50 = 1.52 g of dry matter/g of DPPH). A temperature above 950C caused the highest losses in vitamin C in the blackcurrant homogenates; those losses were lower in the microwave-heated homogenates than in the conventionally heated ones. The heating caused the reducing properties and free radical-scavenging activity to increase; the increase was higher when heating by a traditional method. The frozen storage caused the content of vitamin C and the scavenging capability of free radicals to decrease. As for the reducing power, the effect of storage depended on the raw material. A decrease was reported in the reducing power of the blackcurrant and strawberry homogenates, while the reducing power of cranberry and chokeberry homogenates increased.