EN
Plant functional traits are linked with environmental factors, individuals and ecosystem structure and functions as plants respond and adapt to the environment. Here, the whole-plant traits (plant height and plant biomass), leaf morphological (leaf area, leaf dry mass and specific leaf area) and chemical traits (leaf carbon, nitrogen, phosphorus contents, C/N and N/P ratio) of six dominant species (Cynanchum komarovii Al, Euphorbia esula Linn, Glycyrrhiza uralensis Fisch, Lespedeza potaninii Vass, Agropyron mongolicum Keng and Stipa breviflora Griseb) were studied in the desert grassland of China, with a grazing experiment including four grazing intensity (0.00, 0.45, 1.00, 1.50 sheep ha–1). The effect of grazing on leaf morphological traits were significant for the six dominant species, while the effects on whole-plant traits were highly significant for S. breviflora, A. mongolicum, G. uralensis, L. potaninii and C. komarovii. Three of the six species (S. breviflora, A. mongolicum and L. potaninii) decreased in plant height (PH) with increasing grazing intensity, while specific leaf area (SLA) and leaf N (Nmass) showed the opposite trend. The whole-plant traits were significantly positively correlated with leaf dry mass (LM), but significantly negatively correlated with leaf nitrogen and phosphorus contents. The first principal component analysis (PCA) axis corresponding to plant size (PH and PB) and leaf size (LA and LM), while the second axis of PCA to leaf chemical traits (Nmass, P, C and N/P). Variations of plant traits in response to grazing were mainly explained by size trait and chemical traits. The functional traits cannot be the only basis for predicting plant species in response to grazing, and a functional analysis of the trade-off between plant traits is also needed.