PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 3 |
Tytuł artykułu

Circadian and seasonal changes in honeybee (Apis mellifera) worker susceptibility to pyrethroids

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We examined the susceptibility of the worker honeybee Apis mellifera L. to pyrethroids. Bees were intoxicated by selected synthetic pyrethroids (active substances: beta-cyfl uthrin, deltamethrin, alphacypermethrin, lambda-cyhalothrin, esfenvalerate, and bifenthrin) and 72 hours after intoxication the number of surviving insects was determined. It was observed that the susceptibility of the honeybee to pyrethroids (expressed herein as the survival rate) was changing in diurnal rhythm, ranging from 100% (for a majority of substances in both seasons) to 11.1±0.37% (deltamethrin) and 11.1±0.73% (esfenvalerate) in spring, and 11.1±0.73% (esfenvalerate) and 4.6±0.17% (bifenthrin) in summer. The lowest susceptibility of bees to pyrethroids occurred during the night, when the honeybees were characterized by reduced motility and did not fl y out for foraging, whereas the highest susceptibility was observed during the day, a natural time for seeking food. Along with diurnal changes in the susceptibility described above, differences dependent on the seasons in which the intoxication took place were also observed. Insects intoxicated in summer were less susceptible to pyrethroids than those intoxicated in spring.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
25
Numer
3
Opis fizyczny
p.1177-1185,ref.
Twórcy
  • Department of Ecotoxicology, Institute of Applied Biotechnology and Basic Science, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland
autor
  • Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
  • Department of Botany, Institute of Applied Biotechnology and Basic Science, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland
  • Communal Office in Niwiska, Niwiska 430, 36-147 Niwiska, Poland
  • Department of Ecotoxicology, Institute of Applied Biotechnology and Basic Science, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland
autor
  • Department of Ecotoxicology, Institute of Applied Biotechnology and Basic Science, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland
Bibliografia
  • 1. BACANDRITSOS N., GRANATO A., BUDGE G., PAPANASTASIOU I., ROINIOTI E., CALDON M., FALCARO C., GALLINA A., MUTINELLI F. Sudden deaths and colony population decline in Greek honey bee colonies. J. Invertebr. Pathol. 105, 335, 2010.
  • 2. BONNING B.C. The dicistroviridae: an emerging family of invertebrate viruses. ViroSin. 24 (5), 415, 2009.
  • 3. JOHNSON R.M., EVANS J.D., ROBINSON G.E., BERENBAUM M.R. Changes in transcript abundance relating to colony Collapse Disorder in honey bees (Apis mellifera). Proc. Natl. Acad. Sci. U. S. A. 106, 14790, 2009.
  • 4. NAUG D. Nutritional stress due to habitat loss may explain recent honeybee colony collapses. Biol. Conserv. 142 2369, 2009.
  • 5. STINDL R., STINDL W. Vanishing honeybees: is the dying of adult worker bees a consequence of short telomeres and premature aging? Med. Hypotheses. 75, 387, 2010.
  • 6. CORE A., RUNCKEL C., IVERS J., QUOCK C., SIAPNO T., DENAULT S., BROWN, DERISI J., SMITCH C. D., HEFERNIK J. A new threat to honey bees, the parasitic phorid fl y Apocephalus borealis. Plos ONE. 7 (1), e29639, 2012.
  • 7. PAXTON R.J. Does infection by Nosema ceranae cause “Colony Collapse Disorder” in honey bees (Apis mellifera)? J. Apic. Res. 49 (1), 80, 2010.
  • 8. DESNEUX N., DECOURTYE A., DELPUECH J.M. The sublethal effects of pesticides on benefi cial arthropods. Annu. Rev. Entomol. 52, 81, 2007.
  • 9. FRANCO A.O, GOMES M.G.M., ROWLAND M., COLEMAN P.G., DAVIES C.R. Controlling malaria using livestock-based interventions: a one health approach. PloS ONE. 9 (7), 01699, 2014.
  • 10. RANSON H., GUESSAN R.N., LINES L., MOIROUX N., NKUNI Z., CORBEL V. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol. 27 (2), 91, 2011.
  • 11. CORBEL V., AKOGBETO M., DAMIEN G.B., DJENONTIN A., CHANDRE F., ROGIER C., MOIROUX N., CHABI J., BANGANNA B., PADONOU G.G., HENRY M.-C. Combination of malaria vector control interventions in pyrethroid resistance area in Benin: a cluster randomised controlled trial. The Lancet. 12 (8), 617, 2012.
  • 12. ANADÓN A., MARTÍNEZ-LARRAÑAGA M.R., MARTÍNEZ M.A. Use and abuse of pyrethrins and synthetic pyrethroids in veterinary medicine. Vet. J. 182 (1), 7, 2009.
  • 13. GEORGE D.R., FINN R.D., GRAHAM K.M., SPARAGANO O.A.E. Present and future potential of plantderived products to control arthropods of veterinary and medical signifi cance. Parasit. Vectors. 7, 28, 2014.
  • 14. DEWAILLY E., FORDE M., ROBERTSON L., KADDAR N., LAOUAN SIDI EA., CÔTÉ S., GAUDREAU E., DRESCHER O., AYOTTE P. Evaluation of pyrethroid exposures in pregnant women from 10 Caribbean countries. Environ Int. 63, 201, 2014.
  • 15. TRUNNELLE K., BENNETT D., TULVE N., CLIFTON M., DAVIS M., CALAFAT A., MORAN R., TANCREDI D., HERTZ-PICCIOTTO I. Urinary pyrethroid and chlorpyrifos metabolite concentraitons in northern California families and their relationship to indoor home insecticide levels, part of the study of use of products and exposure related behavior (SUPERB). Environ. Health Perspect. 48 (3), 1931, 2014.
  • 16. YAN H., QIAO F., TIAN M., ROW K.H. Simultaneous determination of nine pyrethroids in indoor insecticide products by capillary gas chromatography. J. Pharm. Biomed. Anal. 51 (3), 774, 2010.
  • 17. ORUC H.H., HRANITZ J.M., SORUCU A., DUELL M., CAKMAK I., AYDIN L., ORMAN A. Determination of acute oral toxicity of fl umethrin in honey bees. J. Econ. Entomol. 105 (6), 1890, 2012.
  • 18. ZHOU T., ZHOU W., WANG Q., DAI P.L., LIU F., ZHANG Y.L., SUN J.H. Effects of pyrethroids on neuronal excitability of adult honeybees Apis mellifera. Pestic. Biochem. Physiol. 100, 35, 2011.
  • 19. BRECKENRIDGE C.B., HOLDEN L., STURGESS N., WEINER M., SHEETS L., SARGENT D., SODERLUND D.M., CHOI J.S., SYMINGTON S., CLARK J.M., BURR S., RAY D. Evidence for a separate mechanism of toxicity for the Type I and the Type II pyrethroid insecticides. NeuroToxicol. 30 (1), 17, 2009.
  • 20. WANG S.-Y., WANG G.K. Voltage-gated sodium channels as primary targets of diverse lipid-solube neurotoxins. Cell. Signal. 15, 151, 2003.
  • 21. SODERLUND D., CLARK J.M., SHEETS L. P., MULLIN L.S., PICCIRILLO V.J., SARGENT D., STEVENS J.T., WEINER M.L. Mechanism of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicol. 171, 3, 2002.
  • 22. MINEAU P., HARDING K.M., WHITESIDE M., FLETCHER M.R., GARTHWAITE D., KNOPPER I.D. Using reports of bee mortality in the fi eld to calibrate laboratory-derived pesticide risk indices. Environ. Entomol. 37 (2), 546, 2008.
  • 23. PSZCZOLKOWSKI M.A., DOBROWOLSKI M. Circadian dynamics of locomotor activity and deltamethrin susceptibility in the pine weevil, Hylobius abietis. Phytoparasitica 27 (1), 19, 1999.
  • 24. PIECHOWICZ B., STAWARCZYK K., STAWARCZYK M. Circadian changes in susceptibility of young honeybee workers to intoxication by pyrethroid, carbamate, organophosphorus, benzoyl urea and pyridine derivative insecticides. J. Plant Prot. Res. 52 (2), 286, 2012.
  • 25. PIECHOWICZ B., GRODZICKI P., STAWARCZYK K., STAWARCZYK M. Circadian and seasonal changes in the honeybee (Apis mellifera) workers susceptibility to diazinon, tefl ubenzuron, pirimicarb and indoxacarb. Pol. J. Environ. Stud. 22 (5), 1457, 2013.
  • 26. PIECHOWICZ B., GRODZICKI P. Circadian changes in susceptibility of various species of Gryllidae to insecticides, depending on time of intoxication and size of tested group. Pol. J. Environ. Stud. 23 (5), 1861, 2014.
  • 27. PIECHOWICZ B., GRODZICKI P. Effect of temperature on toxicity of selected insecticides to forest beetle Anoplotrupes stercorosus. Chem. Didact. Ecol. Metrol. 18 (1-2), 103, 2014.
  • 28. RODRIGUEZ-ZAS S.L., SOUTHEY B.R. , SHEMESH Y., RUBIN E.B., COHEN M., ROBINSON G.E., BLOCH G. Microarray analysis of natural socially regulated plasticity in circadian rhythms of honey bees. J. Biol. Rhythms. 27 (1), 12, 2012.
  • 29. BLOCH G. The social clock of the honeybee. J Biol Rhythms. 25 (5), 307, 2010.
  • 30. STABENTHEINER A., KOVAC H., BRODSCHNEIDER R. Honeybee colony thermoregulation – regulatory mechanisms and contribution of individuals in dependence on age, location and thermal stress. PLoS ONE. 5 (1), e8967, 2010.
  • 31. MOORE D. Honey bee circadian clocks: behavioral control from individual workers to whole-colony rhythms. J. Insect. Physiol. 47, 843, 2001.
  • 32. XU K., DIANGELO J.R., HUGHES M.E., HOGENESCH J.B., SEHGAL A. The circadian clock interacts with metabolic physiology to infl uence reproductive fi tness. Cell Metab. 13 (6), 639, 2011.
  • 33. ABOU-SHAARA H.F. The foraging behaviour of honey bees, Apis mellifera: a review. Vet. Med. 59 (1), 1, 2014.
  • 34. LAMIA K.A., STORCH K.F., WEITZ C.J. Physiological significance of a peripheral tissue circadian clock. Proc. Natl. Acad. Sci. USA. 105 (39), 15172, 2008.
  • 35. NIJLAND M.J.M., HEPBURN H.R. Ontogeny of a circadian rhythm in the cluster temperature of honeybees. S. Afr. J. Sci. 81, 100, 1985.
  • 36. EESA N.M., CUTKOMP L.K. Pesticide chronotoxicity to insects and mites: an overview. J. Islam. Acad. Sci. 8 (1), 21, 1995.
  • 37. ONYEOCHA F.A., FUZEAU-BRAESCH S. Circadian rhythm changes in toxicity of the insecticide dieldrin on larvae of the migratory locust Locusta migratoria migratoroides. Chronobiol. Int. 8 (2), 103, 1991.
  • 38. CLAUDIANOS C., RANSON H., JOHNSON R. M., BISWAS S., SCHULER M.A., BERENBAUM M.R., FEYEREISEN R., OAKESHOTT J.G. A deficit of detoxifi cation enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Mol. Biol. 15 (5), 615, 2006.
  • 39. THE HONEYBEE GENOME SEQUENCING CONSORTIUM. Insights into social insects from the genome of the honeybee Apis mellifera. Nature. 443, 931, 2006.
  • 40. LAMBERT O., PIROUX M., PUYO S., THORIN C., L’HOSTIS M., WIEST L., BULETE A., DELBAC F., POULIQUEN H. Widespread occurrence of chemical residues in beehive matrices from apiaries located in different landscapes of western France. Plos ONE. 8 (6), e67007, 2013.
  • 41. GRODZICKI P., CAPUTA M. Diurnal and seasonal changes in thermal preference of single, isolated bees and small groups of bees (Apis mellifera L.). J. Insect Behav. 27 (4), 701, 2014.
  • 42. TĘGOWSKA E. Insecticides and thermoregulation of insects. Pestycydy/Pesticides. 1 (4), 47, 2003
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-08a09b1a-6a17-4d1b-976e-ea7f9e7e103a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.