PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2019 | 78 | 4 |

Tytuł artykułu

Changes in topographical relation between the ductus arteriosus and left subclavian artery in human embryos: a study using serial sagittal sections

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background: At birth, the ductus arteriosus (DA) merges with the aortic arch in the slightly caudal side of the origin of the left subclavian artery (SCA). Since the SCAs (7th segmental arteries) were fixed on the level of the 7th cervical-first thoracic vertebral bodies, the confluence of DA should migrate caudally. We aimed to describe timing and sequence of the topographical change using serial sagittal sections of 36 human embryos and foetuses (CRL 8–64 mm; 5–10 weeks), Those made easy evaluation of the vertebral levels possible in a few section. Materials and methods: The DA or 6th pharyngeal arch artery seemed to slide down in front of the sympathetic nerve trunk along 1.0–1.2 mm from the second cervical vertebral level at 5–6 weeks and, at 6 weeks (CRL 14–17 mm), the DA confluence with aorta reached the 7th cervical level. Because of the highly elongated common carotid artery, the sliding of DA confluence seemed to be much shorter than the cervical vertebrae growing from 1 mm to 2.4 mm. Results: At the final topographical change at 6–7 weeks, the DA confluence further descended to a site 1-vertebral length below the left SCA origin. From 6 to 9 weeks, a distance from the top of the aortic arch to the left SCA origin was almost stable: 0.3–0.5 mm at 6 weeks and 0.4–0.6 mm at 9 weeks. Conclusions: The heart descent and the caudal extension of the trachea and bronchi, those occurred before the DA sliding, were likely to be a major driving force for the sliding. (Folia Morphol 2019; 78, 4: 720–728)

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

78

Numer

4

Opis fizyczny

p.720-728,fig.,ref.

Twórcy

autor
  • Department of Anatomy, Wuxi School of Medicine, Jiangnan University, Wuxi, China
autor
  • Department of Anatomy, Tokyo Dental College, Tokyo, Japan
autor
  • Department of Anatomy, Chonbuk National University Medical School, Jeonju, Republic of Korea
autor
  • Division of Internal Medicine, Sapporo Asuka Hospital, Sapporo, Japan
autor
  • Institute of Anatomy and Cell Biology, School of Medicine, Georg-August-Universität Gőttingen, Germany
  • Department of Anatomy and Human Embryology, Institute of Embryology, Faculty of Medicine, Complutense University, Madrid, Spain

Bibliografia

  • 1. Abe H, Yamamoto M, Suzuki R, et al. Changes in topographical relation between the ductus arteriosus and left subclavian artery in human embryos: a study using serial sections. Okajimas Folia Anat Jpn. 2017; 94(1): 27–35, doi: 10.2535/ofaj.94.27, indexed in Pubmed: 29213016.
  • 2. Anderson RH, Chaudhry B, Mohun TJ, et al. Normal and abnormal development of the intrapericardial arterial trunks in humans and mice. Cardiovasc Res. 2012; 95(1): 108–115, doi: 10.1093/cvr/cvs147, indexed in Pubmed: 22499773.
  • 3. Barry A. The aortic arch derivatives in human adult. Anat Rec. 1951; 111(2): 221–238, indexed in Pubmed: 14894834.
  • 4. Fukuoka K, Wilting J, Rodríguez-Vázquez JF, et al. The Embryonic Ascent of the Kidney Revisited. Anat Rec (Hoboken). 2019; 302(2): 278–287, doi: 10.1002/ar.23930, indexed in Pubmed: 30290083.
  • 5. Hamilton WJ, Mossman HW. Human embryology. 4th ed. Williams & Wilkins, London 1978: 230–271.
  • 6. Honkura Y, Yamamoto M, Yoshimoto T, et al. Is the ultimobranchial body a reality or myth: a study using serial sections of human embryos. Okajimas Folia Anat Jpn. 2016; 93(2): 29–40, doi: 10.2535/ofaj.93.29, indexed in Pubmed: 27904020.
  • 7. Jin ZW, Yamada T, Kim JiH, et al. Pathogenesis of solitary right aortic arch: a mass effect hypothesis based on observations of serial human embryonic sections. Cardiol Young. 2017; 27(2): 359–368, doi: 10.1017/S1047951115002152, indexed in Pubmed: 26435328.
  • 8. Orts-Llorca F, Puerta Fonolla J, Sobrado J. The formation, septation and fate of the truncus arteriosus in man. J Anat. 1982; 134(Pt 1): 41–56, indexed in Pubmed: 7076544.
  • 9. Radlanski RJ, Renz H. An atlas of prenatal development of the human orofacial region. Eur J Oral Sci. 2010; 118(4): 321–324, doi: 10.1111/j.1600-0722.2010.00756.x, indexed in Pubmed: 20662903.
  • 10. Rana MS, Sizarov A, Christoffels VM, et al. Development of the human aortic arch system captured in an interactive three-dimensional reference model. Am J Med Genet A. 2014; 164A(6): 1372–1383, doi: 10.1002/ajmg.a.35881, indexed in Pubmed: 23613216.
  • 11. Sizarov A, Lamers WH, Mohun TJ, et al. Three-dimensional and molecular analysis of the arterial pole of the developing human heart. J Anat. 2012; 220(4): 336–349, doi: 10.1111/j.1469-7580.2012.01474.x, indexed in Pubmed: 22296102.
  • 12. Skandalakis JE, Gray SW. Embryology for surgeons. 2nd ed. Williams & Wilkins, Baltimore 1994: 976–1030.
  • 13. Takanashi Y, Honkura Y, Rodriguez-Vazquez JF, et al. Pyramidal lobe of the thyroid gland and the thyroglossal duct remnant: a study using human fetal sections. Ann Anat. 2015; 197: 29–37, doi: 10.1016/j.aanat.2014.09.001, indexed in Pubmed: 25458181.
  • 14. Thompson RP, Sumida H, Abercrombie V, et al. Morphogenesis of human cardiac outflow. Anat Rec. 1985; 213(4): 578–86, 538, doi: 10.1002/ar.1092130414, indexed in Pubmed: 4083538.
  • 15. Van Mierop LH, Alley RD, Kausel HW, et al. Pathogenesis of transposition complexes. I. Embryology of the ventricles and great arteries. Am J Cardiol. 1963; 12: 216–225, doi: 10.1016/0002-9149(63)90311-4, indexed in Pubmed: 14047494.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-089d0911-b5c5-4ab7-97d7-d2171d9bc716
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.