PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 12 |
Tytuł artykułu

Regulation of salicylic acid, jasmonic acid and fatty acids in cucumber (Cucumis sativus L.) by spermidine promotes plant growth against salt stress

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Phytohormones and fatty acids play a significant role in developmental stages of plant growth and defense against biotic and abiotic stresses. The purpose of this study was to determine the spermidine (Spd)-induced phytohormones and fatty acids changes involve the acclimation of cucumber plants against salt stress. Plants exposed to salt stress had significant reduction in their growth. Exogenously applied Spd increased the shoot length and protein content in salt-stressed plants. The accumulation of total phenol and malondialdehyde was higher in salt-affected plants than in their controls and these detrimental effects were mitigated by Spd treatment. Moreover, salt stress caused a significant increase in salicylic acid (SA) and jasmonic acid (JA); while Spd treatment ameliorated these salt stress effects by reducing SA and JA content. The marked accumulation of total free fatty acid was observed in salt-stressed plants, while the application of Spd to salt-stressed plants reduced the total free fatty acid content. In addition, Spd inhibited the stearic acid, linoleic acid and linolenic acid in salt-stressed plants. The results of current study suggest that exogenous application of Spd-induced phytohormones and fatty acids changes would be a reason for increasing the acclimation of cucumber plants under salt stress condition.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
35
Numer
12
Opis fizyczny
p.3315-3322,fig.,ref.
Twórcy
  • School of Applied Biosciences, Kyungpook National University, Sangyuk-Dong, Buk-gu, Daegu 702-701, South Korea
autor
  • School of Applied Biosciences, Kyungpook National University, Sangyuk-Dong, Buk-gu, Daegu 702-701, South Korea
Bibliografia
  • Alcazar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249. doi: 10.1007/s00425-010-1130-0
  • Arzani A (2008) Improving salinity tolerance in crop plants: a biotechnological view. In Vitro Cell Dev Biol Plant 44:373–383. doi: 10.1007/s11627-008-9157-7
  • Baek D, Pathange P, Chung JS, Jiang J, Gao I, Oikawa A, Hirai MY, Saito K, Pare P, Shi H (2010) A stress-inducible sulphotransferase sulphonates salicylic acid and confers pathogen resistance in Arabidopsis. Plant Cell Environ 33:1383–1392. doi: 10.1111/j.1365-3040.2010.02156.x
  • Baninasab B, Baghbanha MR (2013) Influence of salicylic acid pre-treatment on emergence and early seedling growth of cucumber (Cucumis sativus) under salt stress. Int J Plant Prod 7(2):187–206
  • Biondi S, Scaramagli S, Capitani F, Altamura MM, Torrigiani P (2001) Methyl jasmonate upregulates biosynthetic gene expression, oxidation and conjugation of polyamines, and inhibits shoot formation in tobacco thin layers. J Exp Bot 52(355):231–242
  • Bolouri-Moghaddam MR, Roy KL, Xiang L, Rolland F, Van-den-Ende W (2010) Sugar signalling and antioxidant network connections in plant cells. FEBS J 277:2022–2037. doi: 10.1111/j.1742-4658.2010.07633.x
  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
  • Creelman RA, Mullet JE (1997) Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc Nat Acad Sci USA 92:4114–4119
  • Duan J, Li J, Guo S, Kang Y (2008) Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance. J Plant Physiol 165:1620–1635. doi: 10.1016/j.jplph.2007.11.006
  • El-Mashad AAA, Mohamed HI (2012) Brassinolide alleviates salt stress and increases antioxidant activity of cowpea plants (Vigna sinensis). Protoplasma 249:625–635. doi: 10.1007/s00709-011-0300-7
  • El-Tayeb MA (2005) Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regul 45:215–224. doi: 10.1007/s10725-005-4928-1
  • Enyedi AJ, Yalpani N, Silverman P, Raskin I (1992) Localization, conjugation and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus. Proc Natl Acad Sci USA 89:2480–2484. doi: 10.1073/pnas.89.6.2480
  • Flores HE, Martin-Tanguy J (1991) Polyamines and plant secondary metabolites. In: Slocum RD, Flores HE (eds) Biochemistry and physiology of polyamines in plants. CRC Press, Boca Raton, pp 57–76
  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319. doi: 10.1093/jxb/erh003
  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. doi: 10.1016/j.plaphy.2010.08.016
  • Hamayun M, Khan SA, Khan AL, Shin JH, Ahmad B, Shin DH, Lee IJ (2010a) Exogenous gibberellic acid reprograms soybean to higher growth and salt stress tolerance. J Agric Food Chem 58:7226–7232. doi: 10.1021/jf101221t
  • Hamayun M, Sohn EY, Khan SA, Shinwari ZK, Khan AL, Lee IJ (2010b) Silicon alleviates the adverse effects of salinity and drought stress on growth and endogenous plant growth hormones of soybean (Glycine max L.). Pak J Bot 42:1713–1722
  • Iqbal M, Ashraf M (2010) Changes in hormonal balance: a possible mechanism of pre-sowing chilling-induced salt tolerance in spring wheat. J Agron Crop Sci 196:440–454. doi: 10.1111/j.1439-037X.2010.00434.x
  • Jumali SS, Said IM, Ismail I, Zainal Z (2011) Genes induced by high concentration of salicylic acid in Mitragyna speciosa. Aust J Crop Sci 5:296–303
  • Khan AL, Hamayun M, Radhakrishnan R, Waqas M, Kang SM, Kim YH, Shin JH, Choo YS, Kim JG, Lee IJ (2012) Mutualistic association of Paecilomyces formosus LHL10 offers thermotolerance to Cucumis sativus. A van Leeuw J Microb 101:267–279. doi: 10.1007/s10482-011-9630-x
  • Ksouri R, Megdiche W, Debez A, Falleh H, Grignon C, Abdelly C (2007) Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiol Biochem 45:244–249. doi: 10.1016/j.plaphy.2007.02.001
  • Kubis J (2008) Exogenous spermidine differentially alters activities of some scavenging system enzymes, H2O2 and superoxide radical levels in water-stressed cucumber leaves. J Plant Physiol 165:397–406. doi: 10.1016/j.jplph.2007.02.005
  • Lopez-Perez L, Martinez-Ballesta MDC, Maurel C, Carvajal M (2009) Changes in plasma membrane lipids, aquaporins and proton pump of broccoli roots, as an adaptation mechanism to salinity. Phytochem 70:492–500. doi: 10.1016/j.phytochem.2009.01.014
  • Mansour MMF, Van Hasselt PR, Kuiper PJC (1994) Plasma membrane lipid alterations induced by NaCl in winter wheat roots. Physiol Plant 92:473–478
  • McCloud ES, Baldwin IT (1997) Herbivory and caterpillar regurgitants amplify the wound induced increases in jasmonic acid but not nicotine in Nicotiana sylvestris. Planta 203:430–435
  • Nadeau P, Delaney S, Chouinard L (1987) Effects of cold hardening on the regulation of polyamine levels in wheat (Triticum aestivum L.) and alfalfa (Medicago sativa L.). Plant Physiol 84:73–77
  • Ohkawa H, Ohishi N, Yagi K (1979) Assay of lipid peroxides in animal tissue by thiobarbituric acid reaction. Anal Biochem 95:351–358
  • Papadakis AK, Roubelakis-Angelakis KA (2005) Polyamines inhibit NADPH oxidase-mediated superoxide generation and putrescine prevents programmed cell death induced by polyamine oxidase-generated hydrogen peroxide. Planta 220(6):826–837
  • Pedranzani H, Racagni G, Alemano S, Miersch O, Ramırez I, Pena-Cortes H, Taleisnik E, Machado-Domenech E, Abdala G (2003) Salt tolerant tomato plants show increased levels of jasmonic acid. Plant Growth Regul 41:149–158. doi: 10.1023/A:1027311319940
  • Radhakrishnan R, Lee IJ (2013a) Spermine promotes acclimation to osmotic stress by modifying antioxidant, abscisic acid, and jasmonic acid signals in soybean. J Plant Growth Regul 32:22–30. doi: 10.1007/s00344-012-9274-8
  • Radhakrishnan R, Lee IJ (2013b) Ameliorative effects of spermine against osmotic stress through antioxidants and abscisic acid changes in soybean pods and seeds. Acta Physiol Plant 35:263–269. doi: 10.1007/s11738-012-1072-1
  • Rady MM (2011) Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Sci Horticul 129:232–237. doi: 10.1016/j.scienta.2011.03.035
  • Sawada H, Shim IS, Usui K (2006) Induction of benzoic acid 2-hydroxylase and salicylic acid biosynthesis—modulation by salt stress in rice seedlings. Plant Sci 171:263–270. doi: 10.1016/j.plantsci.2006.03.020
  • Seskar M, Shulaev V, Raskin I (1998) Endogenous methyl salicylate in pathogen-inoculated tobacco plants. Plant Physiol 116:387–392. doi: 10.1104/pp.116.1.387
  • Shaterian J, Waterer D, Jong HD, Tanino KK (2005) Differential stress responses to NaCl salt application in early and late maturing diploid potato (Solanum sp.) clones. Environ Exp Bot 54:202–212. doi: 10.1016/j.envexpbot.2004.07.005
  • Swain T, Hillls WO (1959) The phenolic constituents of Prunus domestica. The quantitative estimation of phenolic constituents. J Sci Food Agricult 10:63–68
  • Szepesi A, Gemes K, Orosz G, Peto A, Takacs Z, Vorak M, Tari I (2011) Interaction between salicylic acid and polyamines and their possible roles in tomato hardening processes. Acta Bio Szegediensis 55(1):165–166
  • Walters D, Cowley T, Mitchell A (2002) Methyl jasmonate alters polyamine metabolism and induces systemic protection against powdery mildew infection in barley seedlings. J Exp Bot 53(369):747–756
  • Xu S, Hu J, Li Y, Ma W, Zheng Y, Zhu S (2011a) Chilling tolerance in Nicotiana tabacum induced by seed priming with putrescine. Plant Growth Regul 63:279–290. doi: 10.1007/s10725-010-9528-z
  • Xu X, Shi G, Ding C, Xu Y, Zhao J, Yang H, Pan Q (2011b) Regulation of exogenous spermidine on the reactive oxygen species level and polyamine metabolism in Alternanthera philoxeroides (Mart.) Griseb under copper stress. Plant Growth Regul 63:251–258. doi: 10.1007/s10725-010-9522-5
  • Yoon JY, Hamayun M, Lee S, Lee IJ (2009) Methyl jasmonate alleviated salinity stress in soybean. J Crop Sci Biotech 12:63–68
  • Zhang W, Jiang B, Li W, Song H, Yu Y, Chen J (2009) Polyamines enhance chilling tolerance of cucumber (Cucumis sativus L.) through modulating antioxidative system. Sci Horticul 22:200–208. doi: 10.1016/j.scienta.2009.10.001
Uwagi
rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-083b55a3-d3d1-46fb-b217-6993aa42f2e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.