Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 19 |

Tytuł artykułu

Neutralization of oil spills using ecological sorbent glauconite modified by biosurfactants of Pseudomonas spp. PS-17

Treść / Zawartość

Warianty tytułu

Neutralizacja wycieków ropy z wykorzystaniem ekologicznego sorbentu glaukonitu zmodyfikowanego przez biosurfaktanty Pseudomonas spp. PS-17

Języki publikacji



The purpose of the present study was to investigate possible methods to enhance the rate of biodegradation of oil sludge from soil contamination by the petroleum products using glauconite modified by biosurfactants Pseudomonas spp. PS-17, thus reducing the time usually required for bioremediation. Enhancement of biodegradation was achieved through bioaugmentation and biostimulation. Contaminated soil samples were treated with ecological sorbent glauconite modified by biosurfactants Pseudomonas spp. PS-17. Maximum degradation was achieved after the 7 weeks of treatment. Measures against oil spill (gasoline, diesel fuel, motor oil) on parking areas, stations and highways could be carry out through the formation on the area perimeter the engineering chemical barriers with glauconite modified by biosurfactant Pseudomonas spp. PS-17 (10 g biosorbent per 1000 g glauconite). Application rate of glauconite modified with biosorbent is depending on the total oil content and range within 2.2-220 kg per m², respectively and depend of a minor and extreme pollution.
Celem niniejszej pracy było zbadanie efektywności wykorzystania glaukonitu zmodyfikowanego przez biosurfaktanty Pseudomonas spp. PS-17 w celu przyśpieszenia biodegradacji produktów naftowych z zanieczyszczonej gleby, co zwykle zmniejsza czas i wymagania biorekultywacji. Wzmocnienie biodegradacji produktów naftowych zostało osiągnięte poprzez bioaugmentację i biostymulację. Zanieczyszczone próbki gleby poddano działaniu ekologicznego sorbentu glaukonitu zmodyfikowanego przez biosurfaktanty Pseudomonas spp. PS-17. Maksymalny rozkład produktów naftowych uzyskano po 7 tygodniach ekspozycji z glaukonitem. Ochronę przed wyciekiem produktów naftowych (benzyna, olej napędowy, olej silnikowy) na obszarach zabudowanych, stacjach postojowych i autostradach można zorganizować poprzez utworzenie na terenie obwodu bariery inżynierii chemicznej z glaukonitem zmodyfikowanym przez biosurfaktanty Pseudomonas spp. PS-17 (10 g na 1000 g biosorbentu glaukonitu). Zastosowanie glaukonitu zmodyfikowanego przez biosorbent Pseudomonas spp. PS-17 zależy od całkowitej zawartości produktów naftowych na zanieczyszczonym terenie (2,2-220 kg na m²) i jest determinowane jego stopniem zanieczyszczenia.

Słowa kluczowe






Opis fizyczny



  • Danylo Halytsky National Medical University in Lviv, Pekarska 69, Lviv, Ukraine
  • Institute of Biology and Environmental Protection, Pomeranian University in Slupsk, Arciszewskiego 22a, 76-200 Slupsk, Poland
  • Danylo Halytsky National Medical University in Lviv, Pekarska 69, Lviv, Ukraine


  • Abudelgawad G., Page A.L., Lund L., 1975. Chemical Weathering of Glauconite. Soil Sci. Am. Proc., 39, 567-571.
  • Alisi C., Musella R., Tasso F., Ubaldi C., Manzo S., Cremisini C., Sprocati A.R., 2009. Bioremediation of diesel oil in a co-contaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance. Sci. Total Environ., 407(8), 3024-3032.
  • Artemenko A.M., 2004. Certificate of state registration of hazards. V000336. Glauconite. Kyiv.
  • Batista R.M., Rufino R.D., Luna J.M., de Souza J.E., Sarubbo L.A., 2010. Effect of medium components on the production of a biosurfactant from Candida tropicalis applied to the removal of hydrophobic contaminants in soil. Water Environ. Res., 82(5), 418-425.
  • Cameotra S.S., Singh P., 2008. Bioremediation of oil sludge using crude biosurfactants. Internat. Biodeter. and Biodegrad., 62(3), 274-280.
  • Cunningham C.J., Ivshina I.B., Lozinsky V.I., Kuyukina M.S., Philp J.C., 2004. Bioremediation of diesel-contaminated soil by microorganisms immobilised in polyvinyl alcohol. Internat. Biodeter. and Biodegrad., 54(2-3), 167-174.
  • Das N., Chandran P., 2011. Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol. Res. Int., 2011, 941810.
  • de Cássia F.S., Silva R., Almeida D.G., Rufino R.D., Luna J.M., Santos V.A., Sarubbo L.A., 2014. Applications of biosurfactants in the petroleum industry and the remediation of oil spills. Int. J. Mol. Sci., 15(7), 12523-12542.
  • Determination of the concentration of the oil in the soil by infrared spectrophotometry. MU MUK
  • Díaz M.P., Boyd K.G., Grigson S.J., Burgess J.G., 2002. Biodegradation of crude oil across a wide range of salinities by an extremely halotolerant bacterial consortium MPD-M, immobilized onto polypropylene fibers. Biotechnol. Bioeng., 79(2), 145-153.
  • El-Amamy M., Page A., Abudelgawad G., 1982. Chemical and Mineralogical Properties of Glauconite Soil as Related to Potassium Depletion. Soil Sci. of Am. Proc., 46, 426-430.
  • Fedoryshyn Y., Kozub Y., Nakonechny N., 2000. Report on scientific-methodical work to create geochemical engineering models barrier to the migration of polluting enterprises “Naftogaz Ukraine”. Lviv.
  • Glick B.R., Pasternak J.J., Patten C.L., 1994. Molecular biotechnology: principles and applications of recombinant DNA. ASM, Washington.
  • Goncharuk V., Pshinko G., Timoshenko T., 2008. Defluorination of natural waters by filtration through glauconite treated with aluminum salts. J. Water Chem. and Tech., 30(6), 351-357.
  • Grin N.V., Govorunova H.H., 1991. Passport of bioreagent culture Pseudomonas spp. PS-17. Ministry of Health of Ukraine. Gorky Donetsk Medical University. Donetsk, Ukraine.
  • Gusmão C.A.B., Rufino R.D., Sarubbo L.A., 2010. Laboratory production and characterization of a new biosurfactant from Candida glabrata UCP1002 cultivated in vegetable fat waste applied to the removal of hydrophobic contaminant. World J. Microbiol. Biotechnol., 26, 1683-1692. doi, 10.1007/s11274-010-0346-2.
  • Harding S.C., Nash B.P., Petersen E.U., Ekdale A.A., Bradbury C.D., Dyar M.D., 2014. Mineralogy and geochemistry of the main glauconite bed in the Middle Eocene of Texas: paleoenvironmental implications for the verdine facies. PLoS One, 9(2), e87656. doi, 10.1371/journal.pone.0087656.
  • Hong J.H., Kim J., Choi O.K., Cho K.S., Ryu H.W., 2005. Characterization of a dieseldegrading bacterium, Pseudomonas aeruginosa IU5, isolated from oil-contaminated soil in Korea. World J. Microbiol. Biotechnol., 21, 381-384.
  • Jones D.M., Douglas A.G., Parkes R.J., Taylor J., Giger W., Schaffner C., 1983. The recognition of biodegraded petroleum-derived aromatic hydrocarbons in recent marine sediments. Marine Poll. Bull., 14(3), 103-108.
  • Kadali K.K., Simons K.L., Skuza P.P., Moore R.B., Ball A.S., 2012. A complementary approach to identifying and assessing the remediation potential of hydrocarbonoclastic bacteria. J. Microbiol. Meth., 88, 348-355.
  • Khopyak N., Manenko A., Tkachenko H., Kurhaluk N., 2014a. Assessment of glauconite adsorption properties to mercury (II) ions. In: Globalization and environmental issues. (Eds) T. Noch, J. Saczuk, A. Wesołowska. Publisher of Gdańsk Higher School of Administration, Gdańsk, 217-233.
  • Khopyak N., Manenko A., Tkachenko H., Kurhaluk N., 2014b. Hygienic assessment of glauconite using for neutralization of substandard drugs. Słupskie Pr. Biol., 11, 93-102.
  • Khopyak N., Omelchuk S., Manenko A., Khabrovska L., Tkachenko H., Kozub Y., Phedoryshyn Y., 2010. Hygienic assessment of glauconitolite adsorption properties to mercury ion (II). Probl. of Ecol. and Med., 4(1-2), 31-34.
  • Lin M., Yuhua L., Weiwei C., Hui W., Xiaoke H., 2014. Use of bacteria-immobilized cotton fibers to absorb and degrade crude oil. Int. Biodeterior. Biodegrad., 88, 8-12. doi: 10.1016/j.ibiod.2013.11.015.
  • Luna J.M., Rufino R.D., Sarubbo L.A., Rodrigues L.R., Teixeira J.A., de Campos-Takaki G.M., 2011. Evaluation antimicrobial and antiadhesive properties of the biosurfactant Lunasan produced by Candida sphaerica UCP 0995. Curr. Microbiol., 62(5), 1527-1534.
  • Malik Z.A., Ahmed S., 2012. Degradation of petroleum hydrocarbons by oil field isolated bacterial consortium. Afr. J. Biotechnol., 11, 650-658.
  • Manenko A.K., Khopyak N.A., 2001. Technical specifications 02497915.001-2001 “Glauconite natural and modified”. Lviv.
  • Manenko A.K., Khopyak N.A., 2004. Report to the protocol N1/2004 “Sanitary and hygienic evaluation of a documents for use biological preparation Pseudomonas spp. PS-17 production in Ukraine”. Lviv.
  • Manenko A.K., Khopyak N.A. Khabrovska L.V., Artemenko A.M., Mudra I.G., Tkachenko H., Lototska-Dudyk U.B., Krupka N.O., Zakalyak N.R., Hrymalyuk B.T., Kovaliv M.O., Ryshavets L.I., Plukar L.I., Zavada M.I., 2007. Hygienic and toxicological characterization of natural sorbent glauconite. Pract. Medicine, 13(4), 95-99.
  • Manenko A., Khopyak N., Kurhalyuk N., Tkachenko H., Kamiński P., 2010. Toxicological and hygienic estimation of ecological absorptive agent glauconite for processes of biological destruction. In: Globalization and problems of environmental protection. (Eds) T. Noch, A. Wesołowska. Gdańsk Higher School of Administration, Gdańsk, 384-394.
  • Manenko A., Khopyak N., Kurhalyuk N., Tkachenko H., Mudra I., 2009. Toxicological and hygienic estimation of ecological absorptive agent glauconitolite. In: The First Joint PSESETAC Conference on Ecotoxicology “Ecotoxicology in the real world”. Wydawnictwo UJ, Kraków, 80.
  • Methods for determination of petroleum products in the soil (photometric method). Inf. Letter., Moscow, N6, 25.10.1980.
  • Moldes A.B., Paradelo R., Rubinos D., Devesa-Rey R., Cruz J.M., Barral M.T., 2011. Ex situ treatment of hydrocarbon-contaminated soil using biosurfactants from Lactobacillus pentosus. J. Agric. Food Chem., 59(17), 9443-9447.
  • Moldes A.B., Paradelo R., Vecino X., Cruz J.M., Gudiña E., Rodrigues L., Teixeira J.A., Domínguez J.M., Barral M.T., 2013. Partial characterization of biosurfactant from Lactobacillus pentosus and comparison with sodium dodecyl sulphate for the bioremediation of hydrocarbon contaminated soil. Biomed. Res. Int., 2013, 961842.
  • Pacwa-Płociniczak M., Płaza G.A., Poliwoda A., Piotrowska-Seget Z., 2014. Characterization of hydrocarbon-degrading and biosurfactant-producing Pseudomonas sp. P-1 strain as a potential tool for bioremediation of petroleum-contaminated soil. Environ. Sci. Pollut. Res. Int., 21(15), 9385-9395.
  • Pornsunthorntawee O., Wongpanit P., Chavadej S., Abe M., Rujiravanit R., 2008. Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil. Bioresour. Technol., 99(6), 1589-1595.
  • Puškárová A., Bučková M., Chovanová K., Harichová J., Karelová E., Godočiková J., Polek B., Ferianc P., Pangallo D., 2013. Diversity and PAH growth abilities of bacterial strains isolated from a contaminated soil in Slovakia. Biologia, 4, 587-591.
  • Rabenhorst M., Fanning D., 1989. Pyrite and Trace Minerals in Glauconitic Parent Materials of Maryland. Soil Sc. of Am. Proc., 53, 1791-1997.
  • Rahman K.S.M., Rahman T.J., Kourkoutas Y., Petsas I., Marchant R., Banat I.M., 2003. Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Biores. Techn., 90(2), 159-168.
  • Rahman R.N., Ghaza F.M., Salleh A.B., Basri M., 2006. Biodegradation of hydrocarbon contamination by immobilized bacterial cells. J. Microbiol., 44(3), 354-359.
  • Saikia R.R., Deka S., Deka M., Banat I.M., 2012. Isolation of biosurfactant-producing Pseudomonas aeruginosa RS29 from oil-contaminated soil and evaluation of different nitrogen sources in biosurfactant production. Ann. Microbiol., 62, 753-763.
  • Sobrinho H.B., Luna J.M., Rufino R.D., Porto A.L.F., Sarubbo L.A., 2013. Recent Developments in Biotechnology. Vol. 11. Studium Press LLC; Houston, TX, USA. Biosurfactants: Classification, properties and environmental applications; pp. 1-29.
  • Tabatabaee A., Assadi M.M., Noohi A.A., Sajadian V.A., 2005. Isolation of biosurfactant producing bacteria from oil reservoirs. Iranian J. Environ. Health Sci. & Engin., 2(1), 6-12.
  • van Beilen J.B., Funhoff E.G., 2007. Alkane hydroxylases involved in microbial alkane degradation. Appl. Microbiol. Biotechnol., 74(1), 13-21.
  • Zimmer T., Ohkuma M., Ohta A., Takagi M., Schunck W.H., 1996. The CYP52 multigene family of Candida maltosa encodes functionally diverse n-alkane-inducible cytochromes P450. Biochem. Biophys. Res. Commun., 224(3), 784-789.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.