PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 61 | 1 |
Tytuł artykułu

Effect of nutrient and stress factors on polysaccharides synthesis in Proteus mirabilis biofilm

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The extracellular matrix in biofilm consists of water, proteins, polysaccharides, nucleic acids and phospholipids. Synthesis of these components is influenced by many factors, e.g. environment conditions or carbon source. The aim of the study was to analyse polysaccharides levels in Proteus mirabilis biofilms after exposure to stress and nutritional conditions. Biofilms of 22 P. mirabilis strains were cultivated for 24, 48, 72 hours, 1 and 2 weeks in tryptone soya broth or in modified media containing an additional amount of nutrients (glucose, albumin) or stress factors (cefotaxime, pH 4, nutrient depletion). Proteins and total polysaccharides levels were studied by Lowry and the phenol-sulphuric acid methods, respectively. Glycoproteins levels were calculated by ELLA with the use of selected lectins (WGA and HPA). For CLSM analysis dual fluorescent staining was applied with SYTO 13 and WGA-TRITC. In optimal conditions the levels of polysaccharides were from 0 to 442 μg/mg of protein and differed depending on the strains and cultivation time. The agents used in this study had a significant impact on the polysaccharides synthesis in the P. mirabilis biofilm. Among all studied components (depending on tested methods), glucose and cefotaxime stimulated the greatest production of polysaccharides by P. mirabilis strains (more than a twofold increase). For most tested strains the highest amounts of sugars were detected after one week of incubation. CLSM analysis confirmed the overproduction of N-acetyloglucosamine in biofilms after cultivation in nutrient and stress conditions, with the level 111-1134%, which varied depending on the P. mirabilis strain and the test factor.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
61
Numer
1
Opis fizyczny
p.133-139,fig.,ref.
Twórcy
autor
  • Department of Immunobiology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
autor
  • Department of Immunobiology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
  • Department of Immunobiology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
autor
  • Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
autor
  • Department of Immunobiology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
Bibliografia
  • Bajaj IB, Lele SS, Singhal RS (2009) A statistical approach to optimization of fermentative production of poly (gamma glutamic acid) from Bacillus licheniformis NCIM 2324. Bioresour Technol 100: 826-832. 
  • Balague C, Perez J, Rinaudo M, Fernandez L (2011) Inhibition of the adhesion to catheters of uropathogenic Escherichia coli by sub-inhibitory concentrations of cefotaxime. Eur J Obstet Gynecol Reprod Biol 155: 150-156. 
  • Bridier A, Meylheuc T, Briandet R (2013) Realistic representation of Bacillus subtilis biofilms architecture using combined microscopy (CLSM, ESEM and FESEM). Micron 48: 65-69. 
  • Czaczyk K, Myszka K (2007) Biosynthesis of extracellular polymeric substances (EPS) and its role in microbial biofilm formation. Polish J Environ Stud 16: 799-806.
  • Dubois M, Gilles K, Hamilton J, Rebers P, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28: 350-356.
  • Flemming HC, Neu TR, Wozniak DJ (2007) The EPS matrix: the house of biofilm cells. J Bacteriol 189: 7945-7947. 
  • Jacobsen S, Stickler DJ, Mobley HI, Shirtliff MF (2008) Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin Microbiol Rev 21: 26-57.  
  • Jung JH, Choi NY, Lee SY (2013) Biofilm formation and exopolysaccharide (EPS) production by Cronobacter sakazakii depending on environmental conditions. Food Microbiology 34: 70-80. 
  • La Tourette Prosser B, Taylor D, Dix BA, Cleeland R (1997) Method of evaluating effects of antibiotics on bacterial biofilms. Antimicrob Agents Chemother 31: 1502-1506.  
  • Lal P, Sharma D, Pruthi P, Pruthi V (2010) Exopolysaccharide analysis of biofilm-forming Candida albicans. J Appl Microbiol 109: 128-136.  
  • Lee IY, Seo WT, Kim GJ, Kim MK, Ahn SG, Kwon GS, Park YH (1997) Optimization of fermentation conditions for production of exopolysaccharide from Bacillus polymyxa. Bioproc Eng 16: 71-75.
  • Lee WY, Park Y, Ahn JK, Ka KH, Park SY (2007) Factors influencing the production of endopolysacharide and exopolysaccharide from Genoderma appapplanatum. Enzyme Microb Technol 40: 249-254.
  • Leriche V, Sibille P, Carpentier B (2000) Use of an enzyme-linked lectinosorbent assay to monitor the shift in polysaccharide composition in bacteria biofilms. Appl Environ Microbiol 66: 1851-1856.  
  • Lowry O, Rosenbrough N, Lewis-Farr A, Randall R (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265-275.  
  • Marshall SH, Gomez FA, Ramirez R, Nilo L, Henriquez V (2012) Biofilm generation by Piscirickettsia salmonis under growth stress conditions: a putative in vivo survival/persistence strategy in marine environments. Res Microbiol 163: 557-566. 
  • Masuko T, Minami A, Iwasaki N, Majima T, Nishimura SI, Lee YC (2005) Carbohydrate analysis by a phenol-sulphuric acid method in microplate format. Anal Biochem 339: 69-72. 
  • Moryl M, Torzewska A, Jałmużna P, Różalski A (2013) Analysis of Proteus mirabilis distribution in multi-species biofilms on urinary catheters and determination of bacteria resistance to antimicrobial agents. Pol J Microbiol 62: 377-384. 
  • Muzzi-Bjornson L, Macera L (2011) Preventing infection in elders with long-term indwelling urinary catheters. J Am Acad Nurse Prac 23: 127-134.  
  • Nwodo UU, Green E, Okoh AI (2012) Bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci 13: 14002-14015. 
  • Petry S, Furlan S, Crepeau MJ, Cerning J, Desmazeaud M (2000) Factors affecting exocellular polysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus grown in a chemically defined medium. Appl Environ Microbiol 66: 3427-3431. 
  • Razack SA, Velayutham V, Thangavelu V (2013) Influence of various parameters on exopolysaccharide production from Bacillus subtilis. Int J Chem Tech Res 5: 2221-2228.
  • Różalski A, Kwil I, Torzewska A, Baranowska M, Stączek P (2007) Bakterie z rodzaju Proteus - cechy i czynniki chorobotwórczości. Post Hig Med Dośw 61: 204-219 (in Polish).  
  • Stankowska D, Czerwonka G, Rozalska S, Grosicka M, Dziadek J, Kaca W (2012) Influence of quorum sensing signal molecules on biofilm formation in Proteus mirabilis O18. Folia Microbiol 57: 53-60. 
  • Starkey M, Gray K, Chang S, Parsek M (2004) A sticky business: the extracellular polymeric substance matrix of bacterial biofilms. In Microbial biofilms. Ghannoum G, O'Toole G, eds, pp 174-192. ASM Press, Washington DC. 
  • Stickler DJ, Feneley RC (2011) The encrustation and blockage of long-term indwelling bladder catheters: a way forward in prevention and control. Spinal Cord 48: 784-790. 
  • Sutherland I (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147: 3-9.  
  • Vu B, Chen M, Crawford R, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14: 2535-2554. 
  • Wingender I, Neu TR, Flemming HC (1999) What are bacterial extracellular polymeric substances? In Microbial extracellular polymeric substances. Wingender I, Neu TR, Flemming HC, eds, pp 1-15. Springer-Verlag Berlin Heidelberg. 
  • Wojnicz D, Tichaczek-Goska D, Cisowska A (2010) Effect of subinhibitory concentrations of amikacin and ciprofloxacin on the K1 antigen expression and phagocytosis of Escherichia coli strains. Adv Clin Exp Med 19: 429-436.
  • Zalewska-Piątek B, Wilkanowicz S, Bruździak P, Piatek R, Kur J (2013) Biochemical characteristic of biofilm of uropathogenic Escherichia coli Dr+strains. Microbiol Res 168: 367-378. 
  • Zippel B, Neu TR (2011) Characterization of glycoconjugates of extracellular polymeric substances in tufa-associated biofilms by using fluorescence lectin-binding analysis. Appl Environ Microbiol 77: 505-516. 
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-078846ed-28a0-4439-8175-59ce7848de70
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.