Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 31 | 2 |
Tytuł artykułu

Short-chained oxygenated VOC emissions in Pinus halepensis in response to changes in water availability

Treść / Zawartość
Warianty tytułu
Języki publikacji
Short-chained oxygenated VOC (oxVOCs) emissions from Pinus halepensis saplings were monitored in response to changes in water availability. Online measurements were made with a proton transfer reaction— mass spectrometer under controlled conditions, together with CO₂ and H₂O exchange measurements. Masses corresponding to methanol and acetone were the most emitted oxVOCs. All the oxVOC exchanges, except that of acetone (M59), were significantly related to stomatal conductance and transpiration. Acetaldehyde (M45) emission showed, moreover, a strong dependence on the concentration of acetaldehyde in the ambient: stomatal opening (stomatal conductance above 75 mmol m⁻² s⁻¹) only allowed increased emissions when external concentration were below 6 ppb. Acetone (M59) presented an important peak of emission following light and stomatal opening in the morning when plants were water stressed. Thus, the alterations in oxVOC emissions in P. halepensis caused by the water deficit seem to be mainly driven by water stress effect on stomatal closure and oxVOC air concentrations.
Słowa kluczowe
Opis fizyczny
  • Unitat Ecofisiologia CSIC-CEAB-CREAF, CREAF (Centre de Recerca Ecologica i Aplicacions Forestals), Universitat Autonoma de Barcelona, 08193 Ballaterra (Barcelona), Spain
  • Unitat Ecofisiologia CSIC-CEAB-CREAF, CREAF (Centre de Recerca Ecologica i Aplicacions Forestals), Universitat Autonoma de Barcelona, 08193 Ballaterra (Barcelona), Spain
  • Unitat Ecofisiologia CSIC-CEAB-CREAF, CREAF (Centre de Recerca Ecologica i Aplicacions Forestals), Universitat Autonoma de Barcelona, 08193 Ballaterra (Barcelona), Spain
  • de Gouw JA, Goldan PD, Warneke C, Kuster WC, Roberts JM, Marchewka M, Bertman SB, Pszenny AAP, Keene WC (2003) Validation of proton transfer reaction-mass spectrometry (PTRMS) measurements of gas-phase organic compounds in the atmosphere during the New England Air Quality Study (NEAQS) in 2002. J Geophys Res 108:4682
  • Di Castri F (1973) Climatographical comparison between Chile and the western coast of North America. In: di Castri F, Mooney HA (eds) Mediterranean-type ecosystems: origin and structure. Springer, Berlin, pp 21–36
  • Ebel CR, Mattheis JP, Buchanan DA (1995) Drought stress of apple trees alters leaf emission of volatile compounds. Physiol Plant 93:709–712
  • Fall R (2003) Abundant oxygenates in the atmosphere: a biochemical perspective. Chem Rev 103:4941–4952
  • Filella I, Peñuelas J (2006) Daily, weekly and seasonal relationships among VOCs, NOx and O₃ in a semi-urban area near Barcelona. J Atmos Chem 54:189–201
  • Filella I, Peñuelas J, Llusia J (2006) Dynamics of the enhanced emissions of monoterpenes and methyl salicylate, and decreased uptake of formaldehyde by Quercus ilex leaves after application of jasmonic acid. New Phytol 169:135–144
  • Filella I, Wilkinson M, Llusià J, Hewitt CN, Peñuelas J (2007) Volatile organic compounds emissions in Norway spruce (Picea abies) in response to temperature changes. Physiol Plant 130:58–66
  • Gabriel R, Schafer L, Gerlach C, Rausch T, Kesselmeier J (1999) Factors controlling the emissions of volatile organic acids from leaves of Quercus ilex L. (Holm oak). Atmos Environ 33(9):1347–1355
  • Gleadow RM, Woodrow IE (2002) Defense chemistry of cyanogenic Eucalyptus cladocalyx seedlings is affected by water supply. Tree Physiol 22:939–945
  • Gouinguené SP, Turlings TCJ (2002) The effect of abiotic factors on induced volatile emissions in corn plants. Plant Physiol 129:1296–1300
  • Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, McKay W, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmerman P (1995) A global model of natural volatile organic compound emissions. J Geophys Res 100:8873–8892
  • Hansel A, Jordan A, Warneke C, Holzinger R, Lindinger W (1998) Improved detection limit of the proton-transfer-reaction massspectrometer: on-line monitoring of volatile organic compounds at mixing ratios of a few pptv. Rapid Commun Mass Spectrom 12:871–875
  • Hansel A, Jordan A, Warneke C, Holzinger R, Wisthaler A, Lindinger W(1999) Proton-transfer-reaction mass-spectrometry (PTR-MS): on-line monitoring of volatile organic compounds at volume mixing ratios of a few pptv. Plasma Sour Sci Technol 8:332–336
  • IPCC (2001) Climate change 2001: the scientific basis. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Cambridge University Press. Cambridge, p 870
  • Karl T, Potosnak M, Guenther A, Clark D, Walker J, Herrick JD, Geron C (2004) Exchange processes of volatile organic compounds above a tropical rain forest: Implications for modeling tropospheric chemistry above dense vegetation. J Geophys Res Atmos 109(D18):D18306
  • Karl T, Harley P, Guenther A, Rasmussen R, Baker B, Jardine K, Nemitz E (2005) The bi-directional exchange of oxygenated VOCs between a loblolly pine (Pinus taeda) plantation and the atmosphere. Atmos Chem Phys 5:3015–3031
  • Kesselmeier J (2001) Exchange of short-chain oxygenated volatile organic compounds (VOCs) between plants and the atmosphere: a compilation of field and laboratory studies. J Atmos Chem 39(3):219–233
  • Kesselmeier J, Bode K, Hofmann U, Muller H, Schafer L, Wolf A, Ciccioli P, Brancaleoni E, Cecinato A, Frattoni M, Foster P, Ferrari C, Jacob V, Fugit JL, Dutaur L, Simon V, Torres L (1997) Emission of short chained organic acids, aldehydes and monoterpenes from Quercus ilex L. and Pinus pinea L. in relation to physiological activities, carbon budget and emission algorithms. Atmos Environ 31:119–133
  • Kesselmeier J, Bode K, Gerlach C, Jork EM (1998) Exchange of atmospheric formic and acetic acids with trees and crop plants under controlled chamber and purified air conditions. Atmos Environ 32(10):1765–1775
  • Kreuzwieser J, Harren FJM, Laarhoven LJJ, Boamfa I, te Lintel-Hekkert S, Scheerer U, Huglin C, Rennenberg H (2001) Acetaldehyde emission by the leaves of trees—correlation with physiological and environmental parameters. Physiol Plant 113(1):41–49
  • Kuhn U, Rottenberger S, Biesenthal T, Ammann C, Wolf A, Schebeske G, Oliva ST, Tavares TM, Kesselmeier J (2002) Exchange of short-chain monocarboxylic acids by vegetation at a remote tropical forest site in Amazonia. J Geophys Res Atmos 107(D20):8069
  • Lelieveld J, Berresheim H, Borrmann S, Crutzen PJ, Dentener FJ, Fischer H, Feichter J, Flatau PJ, Heland J, Holzinger R, Korrmann R, Lawrence MG, Levin Z, Markowicz KM, Mihalopoulos N, Minikin A, Ramanathan V, de Reus M, Roelofs GJ, Scheeren HA, Sciare J, Schlager H, Schultz M, Siegmund P, Steil B, Stephanou EG, Stier P, Traub M, Warneke C, Williams J, Ziereis H (2002) Global air pollution crossroads over the Mediterranean. Science 298(5594):794–799
  • Lindinger W, Hansel A, Jordan A (1998) On-line monitoring of volatile organic compounds at pptv levels by means of Protontransfer-reaction mass spectrometry (PTR-MS). Medical applications, food control and environmental research. Int J Mass Spectrom Ion Process 173:191–241
  • Llusià J, Peñuelas J (1998) Changes in terpene content and emission in potted Mediterranean woody plants under severe drought. Can J Bot 76:1366–1373
  • Munné-Bosch S, Peñuelas J (2003) Photo- and antioxidative protection, and a role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants. Planta 217:758–766
  • Nemecek-Marshall M, MacDonald RC, Franzen JJ, Wojciechowski CL, Fall R (1995) Methanol emission from leaves—enzymatic detection of gas-phase methanol and relation of methanol fluxes to stomatal conductance and leaf development. Plant Physiol 108:1359–1368
  • Niinemets Ü, Reichstein M (2003) Controls on the emission of plant volatiles through stomata: differential sensitivity of emission rates to stomatal closure explained. J Geophys Res 108:4208
  • Peñuelas J, Llusià J (1999) Short-term responses of terpene emission rates to experimental changes of PFD in Pinus halepensis and Quercus ilex in summer field conditions. Environ Exp Bot 42(1):61–68
  • Peñuelas J, Llusià J (2001a) The complexity of factors driving volatile organic compound emissions by plants. Biol Plant 44(4):481–487
  • Peñuelas J, Llusià J (2001b) Seasonal patterns of non-terpenoid C6-C10VOC emission from seven Mediterranean woody species. Chemosphere 45(3):237–244
  • Peñuelas J, Llusià J (2003) BVOCs: plant defense against climate warming? Trends Plant Sci 8:105–109
  • Peñuelas J, Filella I, Sabate S, Gracia C (2005a) Natural systems: terrestrial ecosystems. In: Llebot JE (ed) Report on climate change in Catalonia. Institut d’Estudis Catalans, Barcelona, pp 517–553
  • Peñuelas J, Filella I, Stefanescu C, Llusià J (2005b) Caterpillars of Euphydryas aurinia (Lepidoptera: Nymphalidae) feeding on Succisa pratensis leaves induce large foliar emissions of methanol. New Phytol 167:851–857
  • Piñol J, Terradas J, Lloret F (1998) Climate warming, wildfire hazard, and wildfire occurrence in coastal eastern Spain. Clim Change 38:345–357
  • Sabaté S, Gracia C, Sánchez A (2002) Likely effects of climate change on growth of Quercus ilex, Pinus halepensis, Pinus pinaster, Pinus sylvestris and Fagus sylvatica forests in the Mediterranean region. For Ecol Manage 162:23–37
  • Schade GW, Goldstein AH (2001) Fluxes of oxygenated volatile organic compounds from a ponderosa pine plantation. J Geophys Res Atmos 106(D3):3111–3123
  • Schade GW, Goldstein AH (2002) Plant physiological influences on the fluxes of oxygenated volatile organic compounds from ponderosa pine trees. J Geophys Res 107(D10):4082
  • Seco R, Peñuelas J, Filella I (2007) Short-chain oxygenated VOCs: emission and uptake by plants and atmospheric sources, sinks, and concentrations. Atmos Environ 41:2477–2499. doi: 10.1016/j.atmosenv.2006.11.029
  • Simon V, Dumergues L, Solignac G, Torres L (2005) Biogenic emissions from Pinus halepensis: a typical species of the Mediterranean area. Atmos Res 74(1–4):37–48
  • Staudt M, Wolf A, Kesselmeier J (2000) Influence of environmental factors on the emissions of gaseous formic and acetic acids from orange (Citrus sinensis L.) foliage. Biogeochemistry 48(2):199–216
  • Staudt M, Rambal S, Joffre R, Kesselmeier J (2002) Impact of drought on seasonal monoterpene emissions from Quercus ilex in southern France. J Geophys Res. doi:10.1029/2001JD002043
  • Takabayashi J, Dicke M, Posthumus MA (1994) Volatile herbivoreinduced terpenoids in plant-mite interactions: variation caused by biotic and abiotic factors. J Chem Ecol 20:1324–1354
  • Warneke C, de Gouw JA, Kuster WC, Goldan PD, Fall R (2003) Validation of atmospheric VOC measurements by protontransfer-reaction mass spectrometry using a gas-chromatographic preseparation method. Environ Sci Technol 37:2494–2501
Rekord w opracowaniu
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.