PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 65 | 1 |
Tytuł artykułu

Recent advances in processing and development of buckwheat derived bakery and non-bakery products - a review

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The functional food development is one of the most interesting fi elds of the food industry. The knowledge of the effects of processing is essential in order to optimize the conditions and to obtain functional foods rich in bioactive compounds. Many functional buckwheat derived bakery and non-bakery products have been put into production including buckwheat enhanced breads, biscuits, snacks, noodles, tea, tarhana, sprouts, and fi nally buckwheat honey. This article reviews the studies carried out in the past few years in relation to the effects of processing on bioactive compounds in buckwheat derived bakery and non-bakery products, and on their overall nutritional value and consumer acceptance. Finally, the future trends in buckwheat processing are addressed.
Wydawca
-
Rocznik
Tom
65
Numer
1
Opis fizyczny
p.9-20,fig.,ref.
Twórcy
  • Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, P.O.Box 55, 10-748 Olsztyn, Poland
autor
  • Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, P.O.Box 55, 10-748 Olsztyn, Poland
autor
  • Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, P.O.Box 55, 10-748 Olsztyn, Poland
Bibliografia
  • 1. Álvarez-Jubete L., Wijngaard H., Arendt E.K., Gallagher E., Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chem., 2010, 119, 770-778.
  • 2. Alvarez-Jubete L., Arendt E.K., Gallagher E., Nutritive value and chemical composition of pseudocereals as gluten-free ingredients. Int. J. Food Sci. Nutr., 2009, 60 (S4), 240-257.
  • 3. Amarowicz R., Dykes G.A., Pegg R.B., Antibacterial activity of tannin constituents from Phaseolus vulgaris, Fagoypyrum esculentum, Corylus avellana and Juglans nigra. Fitoterapia, 2008, 79, 217-219.
  • 4. Aoyagi Y., An angiotensin-I converting enzyme inhibitor from buckwheat (Fagopyrum esculentum Moench) flour. Phytochemistry, 2006, 67, 618-621.
  • 5. Baljeet S.Y., Ritika B.Y., Roshan, L.Y., Studies on functional properties and incorporation of buckwheat flour for biscuit making. Int. Food Res. J., 2010, 17, 1067-1076.
  • 6. Bigliardi B., Galati F., Innovation trends in the food industry: The case of functional foods. Trends Food Sci. Tech., 2013, 31, 118-129.
  • 7. Bilgięli N., Utilization of buckwheat flour in gluten-free egg noodle production. J. Food Agric. Environ., 2008, 6, 113-115.
  • 8. Bilgięli N., Effect of buckwheat flour on chemical and functional properties of tarhana. LTW-Food Sci. and Technol., 2009a, 42, 514-518.
  • 9. Bilgięli N., Enrichment of gluten-free tarhana with buckwheat flour. Int. J. Food Sci. Nutr., 2009b, 60, 1-8.
  • 10. Błaszczak W, Zielińska D., Zieliński H., Szawara-Nowak D., Fornal J., Antioxidant properties and rutin content of high pressure-treated raw and roasted buckwheat groats. Food Bioprocess Tech., 2013, 6, 1, 92-100.
  • 11. Bojňanská T., Frančaková H., Chlebo P., Vollmannová A., Rutin content in buckwheat enriched bread and influence of its consumption on plasma total antioxidant status. Czech J. Food Sci., 2009, 27, 236-240.
  • 12. Bonafaccia G., Marocchini M., Kreft I., Composition and technological properties of the flour and bran from common and tartary buckwheat. Food Chem., 2003, 80, 9-15.
  • 13. Briskin D.P., Medicinal plants and phytomedicines. Linking plant biochemistry and physiology to human health. Plant Physiol., 2000, 124, 507-514.
  • 14. Brudzynski K., Kim L., Storage-induced chemical changes in active components of honey deregulate its antibacterial activity. Food Chem., 2011a, 126, 1155-1163.
  • 15. Brudzynski K., Miotto D., Honey melanoidins: Analysis of the compositions of the high molecular weight melanoidins exhibiting radical-scavenging activity. Food Chem., 2011b, 126, 1155-1163.
  • 16. Burluc R.M., Vizireanu C., Dinica R., Dima F., The use of pseudo-cereals flours in bakery. Scientific Study and Research: Chemistry & Chemical Engineering, Biotechnology, Food Industry, 2012, 13, 177-186 (in French).
  • 17. Chandrssekaran S., Ramanathan S., Basak T., Microwave food processing-A review. Food Res. Int., 2013, 52, 234-261.
  • 18. Chlopicka J., Pasko P., Gorinstein S., Jedryas A., Zagrodzki P., Total phenolic and total flavonoid content, antioxidant activity and sensory evaluation of pseudocereal breads. LWT - Food Sci. Technol., 2012, 46, 548-555.
  • 19. Choy A.-L., Morrison P.D., Hughes J.G., Marriott P.J., Small D.M., Quality and antioxidant properties of instant noodles enhanced with common buckwheat flour. J. Cereal Sci., 2013, 57, 281-287.
  • 20. Chun H.H., Song K.B., Optimisation of the combined treatments of aqueous chlorine dioxide, fumaric acid and ultraviolet-C for improving the microbial quality and maintaining sensory quality of common buckwheat sprout. Int. J. Food Sci. Tech., 2013, 49, 121-127.
  • 21. Coda R., Di Cargno R., Gobbetti M., Rizzello C.G., Sourdough lactic acid bacteria: exploration of non-wheat cereal-based fermentation. Food Microbiol., 2014, 37, 51-58.
  • 22. Delgado-Andrade C., Maillard reaction products: some considerations on their health effects. Clin. Chem. Lab. Med., 2014, 52, 53-60.
  • 23. Espín J.C., García-Conesa M.T., Tomás-Barberán F.A., Nutra-ceuticals: Facts and fiction. Phytochemistry, 2007, 68, 2986-3008.
  • 24. Fabjan N., Rode J., Kosir I.J., Zhang Z., Kreft I., Tartary buckwheat (Fagopyrum tataricum Gaertn.) as source of dietary rutin and quercetin. J. Agric. Food Chem., 2003, 51, 6452-6455.
  • 25. Filipčev B., Šimurina O., Sakač M., Sedej I., Jovanov P., Pestorić M., Bodroža-Solarov M., Feasibility of use of buckwheat flour as an ingredient in ginger nut biscuit formulation. Food Chem., 2011, 125, 164-170.
  • 26. Gabrovska D., Fiedlerova V., Holasova M., Maskova E., Smrcinov H., Rysova J., Winterova R., Michalova A., Hutar M., The nutritional evaluation of underutilized cereals and buckwheat. Food Nutr. Bull., 2002, 23, 246-249.
  • 27. Gandhi A., Dey G., Fermentation responses and in vitro radical scavenging activities of Fagopyrum esculentum. Int. J. Food Sci. Nutr., 2013, 64, 53-7.
  • 28. Gawlik-Dziki U., Dziki D., Baraniak B., Lin R., The effect of simulated digestion in vitro on bioactivity of wheat bread with Tartary buckwheat flavones addition. LWT-Food Sci. Technol., 2009, 42, 137-143.
  • 29. González-Sarrías A., Larrosa M., García-Conesa M.T., Tomás-Barberán F.A., Espín J.C., Nutraceuticals for older people: facts, fictions and gaps in knowledge. Maturitas, 2013, 75, 313-34.
  • 30. Hara T., Sasaki T., Tetsuka T., Ikoma H., Kohyama K., Effects of sprouting on texture of cooked buckwheat (Fagopyrum esculentum Moench) noodles. Plant Prod. Sci., 2009, 12, 492-496.
  • 31. Haraguchi Y., Imada Y., Sawamura S.-I., Production and characterization of fine matcha for processed food. J. Jpn. Soc. Food Sci., 2003, 50, 468-473.
  • 32. Hatcher D.W, Bellido G.G., Anderson M.J., Dexter J.E., Head D., Izydorczyk, M., Investigation of empirical and fundamental soba noodle texture parameters prepared with tartary, green testa and common buckwheat. J. Text. Stud., 2011, 42, 490-502.
  • 33. Hatcher D.W., You S., Dexter J.E., Campbell C., Izydorczyk M.S., Evaluation of the performance of flours from cross -and self - pollinating Canadian common buckwheat (Fagopyrum esculentum Moench) cultivars in soba noodles. Food Chem., 2008, 107, 722-731.
  • 34. Hayashi T., Takahashi Y., Todoriki S., Sterilization of foods with low-energy electrons ("soft-electrons"). Radiat. Phys. Chem., 1998, 52, 1-6.
  • 35. Head D.S., Cenkowski S., Arntfield S., Henderson K., Superheated steam processing of oat groats. LWT - Food Sci. Technol., 2010, 43, 690-694.
  • 36. Higasa S., Fujihara S., Hayashi A., Kimoto K., Aoyagi Y., Distribution of a novel angiotensin I-converting enzyme inhibitory substance (2"-hydroxynicotianamine) in the flour, plant parts, and processed products of buckwheat. Food Chem., 2011, 125, 607-613.
  • 37. Hossen Z., Light emitting diodes increase phenolics of buckwheat (Fagopyrum esculentum) sprouts. J. Plant Inter., 2007, 2, 71-78.
  • 38. Hromádková Z., Stavová A., Ebringerová A., Hirsch J., Effect of buckwheat hull hemicelluloses addition of the bread-making quality of wheat flour. J. Food Nutr. Res., 2007, 46, 158-166.
  • 39. Juszczak L., Fortuna T., Rheology of selected Polish honeys. J. Food Eng., 2006, 75, 43-49.
  • 40. Kalinova J., Triska J., Vrchotova N., Distribution of vitamin E, squalene, epicatechin, and rutin in common buckwheat plants (Fagopyrum esculentum Moench). J. Agric. Food Chem., 2006, 54, 5330-5335.
  • 41. Kawa J. M., Taylor C. G., Przybylski R., Buckwheat concentrate reduces serum glucose in streptozotocin-diabetic rats. J. Agric. Food Chem., 2003, 51, 7287-7291.
  • 42. Khan R. S., Grigor J., Winger R., Win A., Functional food product development - Opportunities and challenges for food manufacturers. Trends Food Sci. Technol., 2013, 30, 27-37.
  • 43. Kim S.-J., Kim S.-K., Park C.-H., Introduction and nutritional evaluation of buckwheat sprouts as a new vegetable. Food Res. Int., 2004, 37, 319327.
  • 44. Kowalski S., Changes of antioxidant activity and formation of 5-hydroxymethylfurfural in honey during thermal and microwave processing. Food Chem., 2013, 141, 1378-1382.
  • 45. Kreft I., Fabjan N., Yasumoto K., Rutin content in buckwheat (Fagopyrum esculentum Moench) food materials and products. Food Chem., 2006, 98, 508-512.
  • 46. Krkosková B., Mrázová Z., Prophylactic components of buckwheat. Food Res. Int., 2005, 38, 561-568.
  • 47. Li G., Shi J., Yan M., Wang X., Effects of transglutaminase on the quality of fried instant buckwheat noodle. Trans. Chin. Soc. Agric. Eng., 2008, 24, 281-287.
  • 48. Lin L.-Y., Liu H.-M., Yu Y.-W, Lin S.-D., Mau J.-L., Quality and antioxidant property of buckwheat enhanced wheat bread. Food Chem., 2009, 112, 987-991.
  • 49. Liu Z., Ishikawa W, Huang X., Tomotake H., Kayashita J., Watanabe H., Kato N., A buckwheat protein product suppresses 1,2-dimethylhydrazine-induced colon carcinogenesis in rats by reducing cell proliferation. J. Nutr., 2001, 131, 1850-1853.
  • 50. Ma Y.J., Guo X.D., Liu H., Xu B.N., Wang M., Cooking, textural, sensorial, and antioxidant properties of common and tartary buckwheat noodles. Food Sci. Biotech., 2013, 22, 153-159.
  • 51. McKibben J., Engeseth N.J., Honey as a protective agent against lipid oxidation in ground Turkey. J. Agric. Food Chem., 2002, 50, 592-595.
  • 52. Moroni A.V, Arendt E.K., Dal Bello F., Biodiversity of lactic acid bacteria and yeasts in spontaneously-fermented buckwheat and teff sourdoughs. Food Microbiol., 2011a, 28, 497-502.
  • 53. Moroni A.V, Dal Bello F., Zannini E., Arendt E.K., Impact of sourdough on buckwheat flour, batter and bread: Biochemical, rheological and textural insights. J. Cereal Sci., 2011b, 54, 195-202.
  • 54. Moroni A.V, Zannini E., Sensidoni G., Arendt E.K., Exploitation of buckwheat sourdough for the production of wheat bread. Eur. Food Res. Technol., 2012, 235, 659-668.
  • 55. Mundo M.A., Padilla-Zakour O.I., Worobo R.W, Growth inhibition of foodborne pathogens and food spoilage organisms by select raw honeys. Int. J. Food Microbiol., 2004, 97, 1-8.
  • 56. Nagai T., Inoue R., Kanamori N., Suzuki N., Nagashima T., Characterization of honey from different floral sources. Its functional properties and effects of honey species on storage of meat. Food Chem., 2006, 97, 256-262.
  • 57. Nagai T., Sakai M., Inoue R., Inoue H., Suzuki N., Antioxidative activities of some commercially honeys, royal jelly, and propolis. Food Chem., 2001, 75, 237-240.
  • 58. Normen L., Bryngelsson S., Johnsson M., Evheden L. E., Brants H., Andersson H., Dutta P., The phytosterol content of some cereal foods commonly consumed in Sweden and in the Netherlands. J. Food Compos. Anal., 2002, 15, 693-704.
  • 59. Norton T., Sun D.-W., Recent advances in the use of high pressure as an effective processing technique in the food industry. Food Bioprocess Technol., 2008, 1, 2-34.
  • 60. Ono K., Endo H., Yamada J., Shoji I., Isobe S., Effect of superheated steam treatment on the preservation and sensory characteristics of buckwheat noodles. J. Jpn. Soc. Food Sci., 2007, 54, 320-325.
  • 61. Orsák M., Lachman J., Vejdová M., Pivec V, Hamouz K., Changes of selected secondary metabolites in potatoes and buckwheat caused by UV gamma - and microwave irradiation. Rostlinna Vyroba, 2001, 47, 493-500.
  • 62. Ötles S., Cagindi Ö., Cereals based functional foods and nutra-ceuticals. Acta Sci. Pol. Technol., 2006, 5, 107-112.
  • 63. Park C.H., Kim Y.B., Choi Y.S., Heo K., Kim S.L., Lee K.C., Chang K.J., Lee H.B., Rutin content in food products processed from groats, leaves, and flowers of buckwheat. Fagopyrum, 2008, 17, 63-66.
  • 64. Pasini F., Gardini S., Marcazzan G.L., Caboni M.F., Buckwheat honeys: screening of composition and properties. Food Chem., 2013, 141, 2802-2811.
  • 65. Peng C.C., Chen K.C., Yang Y.L., Lin L.Y., Peng R.Y., Aqua-culture improved buckwheat sprouts with more abundant precious nutrients and hypolipidemic activity. Int. J. Food Sci. Nutr., 2009, 60, 232-245.
  • 66. Qin P., Li W, Yang Y., Guixing R., Changes in phytochemical compositions, antioxidant and a-glucosidase inhibitory activities during the processing of tartary buckwheat tea. Food Res. Int., 2013, 50, 562-567.
  • 67. Randhir R., Kwon Y.-I., Shetty K., Effect of thermal processing on phenolics, antioxidant activity and health-relevant function-ality of selected grain sprouts and seedlings. Innov. Food Sci. Emerg. Technol., 2008, 9, 355-364.
  • 68. Schoenlechner R., Wendner M., Siebenhandl-Ehn S., Berghofer E., Pseudocereals as alternative sources for high folate content in staple foods. J. Cereal Sci., 2010, 52, 475-479.
  • 69. Şensoy Í., Rosen R.T., Ho C.-T., Karwe M.V, Effect of processing on buckwheat phenolics and antioxidant activity. Food Chem., 2006, 99, 388-393.
  • 70. Shin H.S., Ustunol Z., Influence of honey-containing marinades on heterocyclic aromatic amine formation and overall mutagen-icity in fried beef steak and chicken breast. J. Food Sci., 2004, 69, FCT147-FCT153.
  • 71. Shin H.S., Strasburg G.M., Ustunol Z., Influence of different unifloral honeys on heterocyclic aromatic amine formation and overall mutagenicity in fried ground-beef patties. J. Food Sci., 2003, 68, 810-815.
  • 72. SkrabanjaV, Liljeberg Elmstahl H.G., Kreft I., Björck I.M., Nutritional properties of starch in buckwheat products: studies in vitro and in vivo. J. Agric. Food Chem., 2001, 49, 490-496.
  • 73. Socha R., Juszczak L., Pietrzyk S., Gałkowska D., Fortuna T., Witczak T., Phenolic profile and antioxidant properties of Polish honeys. Int. J. Food Sci. Technol., 2011, 46, 528-534.
  • 74. Steadman K.J., Burgoon M.S., Lewis B.A., Buckwheat seed milling fraction: description, macronutrients composition and dietary fibre. J. Cereal Sci., 2001, 33, 271-278.
  • 75. Suzuki T., Kim S.J., Mukasa Y., Morishita T., Noda T., Takigawa S., Hashimoto N., Yamauchi H., Matsuura-Endo C., Effects of lipase, lipoxygenase, peroxidase and free fatty acids on volatile compound found in boiled buckwheat noodles. J. Sci. Food Agric., 2010, 90, 1232-1237.
  • 76. Szawara-Nowak D., Koutsidis G., Wiczkowski, W., Zieliński, H., Evaluation of the in vitro inhibitory effects of buckwheat enhanced wheat bread extracts on the formation of advanced gly-cation end-products (AGEs). LWT - Food Sci. Technol., 2014, 58, 327-334.
  • 77. Tomotake H., Yamamoto N., Yanaka N., Ohinata H., Yamaza-ki R., Kayashita, J., Kato N., High protein buckwheat flour suppresses hypercholesterolemia in rats and gallstone formation in mice by hypercholesterolemic diet and body fat in rats because of its low protein digestibility. Nutrition, 2006, 22, 166-173.
  • 78. Van Hung P., Maeda T., Tsumori R., Morita N., Characteristics of fractionated flours from whole buckwheat grain using a gradual milling system and their application for noodle making. J. Sci. Food Agric., 2007, 87, 2823-2829.
  • 79. Vit P., Rodríguez-Malaver A., Rondón C., González I., Di Bernardo M.L., García M.Y., Bioactive indicators related to bioelements of eight unifloral honeys. Archivos Latinoamericanos de Nutrición, 2010, 60, 405-410.
  • 80. Vogrinćić M., Timoracka M., Melichacova S., Vollmannova A., Kreft I., Degradation of rutin and polyphenols during the preparation of Tartary buckwheat bread. J. Sci. Food Agric., 2010, 58, 4883-4887.
  • 81. Wang X.H., Gheldof N., Engeseth N.J., Effect of processing and storage on antioxidant capacity of honey. J. Food Sci., 2004, 69, 96-101.
  • 82. Wijngaard H.H., Arendt E.K., Buckwheat. Cereal Chem., 2006, 83, 391-401.
  • 83. Wilczyńska A., Phenolic content and antioxidant activity of different types of Polish honey - A short report. Pol. J. Food Nutr. Sci., 2010, 60, 309-313.
  • 84. Wójtowicz A., Kolasa A., Mościcki L., Influence of buckwheat addition on physical properties, texture and sensory characteristics of extruded corn snacks. Pol. J. Food Nutr. Sci., 2013, 63, 239-244.
  • 85. Yao Y., Shan F., Bian J., Chen F., Wang M., Ren G., D-chiro-inositol-enriched tartary buckwheat bran extracts lowers the blood glucose level in KK-Ay mice. J. Agric. Food Chem., 2008, 56, 10027-10031.
  • 86. Yildiz G., Bilgięli N., Effects of whole buckwheat flour on physical, chemical, and sensory properties of flat bread, lava§. Czech J. Food Sci., 2012, 30, 534-540.
  • 87. Yoo J., Kim Y., Yoo S.-H., Inglett G.E., Lee S., Reduction of rutin loss in buckwheat noodles and their physicochemical characterization. Food Chem., 2012, 132, 2107-2111.
  • 88. Yoon K.H., Chung S.H., Oh H.S., Prediction of shelf-life of cold buckwheat noodles mixed with vitamin D2 enriched siitake mushroom and seaweed derived calcium. J. Korean Soc. Food Sci. Nutr., 2007, 36, 1225-1228.
  • 89. Zhang M., Chen H., Li J., Pei Y., Liang Y., Antioxidant properties of tartary buckwheat extracts as affected by different thermal processing methods. LWT - Food Sci. Technol., 2010, 43, 181-185.
  • 90. Zhang Z.-L., Zhou M.-L., Tang Y., Li F.-L., Tang Y.-X., Shao J.-R., Xue W-T., Wu Y.-M., Bioactive compounds in functional buckwheat food. Food Res. Int., 2012, 49, 389-395.
  • 91. Zielińska D., Zieliński H., Low molecular weight antioxidants and other biologically active components of buckwheat seeds. Eur. J. Plant Sci. Biotech., 2009, 3, 29-38.
  • 92. Zielińska D., Zieliński H., Antioxidant activity of flavone C--glucosides determined by updated analytical strategies. Food Chem., 2011, 124, 672-678.
  • 93. Zielińska D., Szawara-Nowak D., Zieliński H., Antioxidative and anti-glycation activity of bitter buckwheat tea. Eur. J. Plant Sci. Biotech.,2009, 3, 79-83.
  • 94. Zielińska D., Szawara-Nowak D., Zieliński H., Determination of the antioxidant activity of rutin and its contribution to the antioxidant capacity of diversified buckwheat origin material by updated analytical strategies. Pol. J. Food Nutr. Sci., 2010, 60, 315-321.
  • 95. Zielińska D., Szawara-Nowak D., Zieliński H., Antioxidative and anti-glycation activity of buckwheat hull tea infusion. Int. J. Food Prop., 2013, 16, 228-239.
  • 96. Zieliński H., Michalska A., Amigo-Benavente M., Del Castillo D., Piskuła, M.K., Changes in protein quality and antioxidant properties of buckwheat seeds and groats induced by roasting. J. Agric. Food Chem., 2009, 57, 4771-4776.
  • 97. Zieliński H., Michalska A., Piskuła M.K., Kozłowska H., Anti-oxidants in thermally treated buckwheat groats. Mol. Nutr. Food Res., 2006, 50, 824-832.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-0763d2e2-43e9-41c2-b9f8-41d7fbf560e7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.