Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 15 | 3 |

Tytuł artykułu

Immunohistochemical characterization of neurons in the vestibular ganglion (Scarpa’s ganglion) of the pig

Treść / Zawartość

Warianty tytułu

Języki publikacji



The study was carried out on three 4-month old female pigs. All the animals were deeply anesthetized and transcardially perfused with 4% buffered paraformaldehyde (pH 7.4). Vestibular ganglia (VG) were collected and processed for double-labelling immunofluorescence method. The preparations were examined under the Zeiss LSM 710 confocal microscope equipped with adequate filter blocks. Neurons forming VG were round or oval in shape with a round nucleus in the center. The majority of them (58%) were medium (M) (31-50 μm in diameter) while 28 % and 14% were small (S) (up to 30 μm in diameter) or large (L) (above 50 μm in diameter) in size, respectively. Double-labeling immunofluorescence revealed that VG neurons stained for CGRP (approx. 81%; among them 70.5%, 26.2% and 3.3% were M, S and L in size, respectively), VACHT (57%; 63% M, 24% S, 13% L), Met-Enk (25%; 60% M, 12% S, 28% L), VIP (20%; 88% M, 6% S, L), NPY (15%; 67% M, 20% S, 13% L), GAL (15%; 74% M, 21% S, 5% L), SP (12%; 69% M, 25% S, 6% L) and NOS-positive (12%; 50% S, 50% M). The most abundant populations of intraganglionic nerve fibers were those which stained for CGRP or Met-Enk, whereas only single SP- or NOS-positive nerve terminals were observed.








Opis fizyczny



  • Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-719 Olsztyn, Poland


  • Ballantyne J, Engstrom H (1969) Morphology of the vestibular ganglion cells. J Laryngol Otol 83: 19-42.
  • Baurle J, Bruning G, Schemann M, Nishiike S, Guldin WO (1999) Co-localization of glutamate, choline acetyltransferase and glycine in the mammalian vestibular ganglion and periphery. Neuroreport 10: 3517-3521.
  • Calingasan NY, Ritter S (1992) Presence of galanin in rat vagal sensory neurons: evidence from immunohistochemistry and in situ hybridization. J Auton Nerv Syst 40: 229-238.
  • Carpenter MB, Cowie RJ (1985) Transneuronal transport in the vestibular and auditory systems of the squirrel monkey and the arctic ground squirrel. I. Vestibular system.Brain Res 358: 249-263.
  • Chat M, Sans A (1979) Multipolar neurons in the cat vestibular ganglion. Neuroscience 4: 651-657.
  • Ch’ng JL, Christofides ND, Anand P, Gibson SJ, Allen YS, Su HC, Tatemoto K, Morrison JF, Polak JM, Bloom SR (1985) Distribution of galanin immunoreactivity in the central nervous system and the responses of galanin-containing neuronal pathways to injury. Neuroscience 16: 343-354.
  • Chi FL, Jiao Y, Liu HJ, Wang J, Shi Y, Barr JJ (2007) Retrograde neuron tracing with microspheres reveals projection of CGRP-immunolabeled vestibular afferent neurons to the vestibular efferent nucleus in the brainstem of rats. Neuroendocrinology 85: 131-138.
  • Cox RG, Peusner KD (1990) Horseradish peroxidase labeling of the central pathways in the medulla of the ampullary nerves in the chicken, Gallus gallus. J Comp Neurol 297: 564-581.
  • Curthoys IS (1981) Scarpa’s ganglion in the rat and guinea pig. Acta Otolaryngol 92: 107-113.
  • Czyzyk-Krzeska MF, Bayliss DA, Lawson EE, Millhorn DE (1991) Expression of messenger RNAs for peptides and tyrosine hydroxylase in primary sensory neurons that innervate arterial baroreceptors and chemoreceptors. Neurosci Lett 129: 98-102.
  • Felix D, Felix H (1995) Intracellular study of substance P in human Scarpa’s ganglion cells. ORL J Otorhinolaryngol Relat Spec 57: 15-17.
  • Felix H, Schickinger B, Felix D (1996) Immunohistochemical and electrophysiological demonstration of substance P in human vestibular ganglion cells. Acta Otolaryngol 116: 273-276.
  • Flores A, Leon-Olea M, Vega R, Soto E (1996) Histochemistry and role of nitric oxide synthase in the amphibian (Ambystoma tigrinum) inner ear. Neurosci Lett 205: 131-134.
  • Flores A, Soto E, Vega R (2001) Nitric oxide in the afferent synaptic transmission of the axolotl vestibular system. Neuroscience 103: 457-464.
  • Gray H (1988) Gray’s Anatomy: The Classic Collector’s Edition. Random House Value Publishing, Incorporated, New York, NY, USA
  • Helke CJ, Hill KM (1988) Immunohistochemical study of neuropeptides in vagal and glossopharyngeal afferent neurons in the rat. Neuroscience 26: 539-551.
  • Helke CJ, Rabchevsky A (1991) Axotomy alters putative neurotransmitters in visceral sensory neurons of the nodose and petrosal ganglia. Brain Res 551: 44-51.
  • Hess A, Bloch W, Arnhold S, Andressen C, Stennert E, Addicks K, Michel O (1998) Nitric oxide synthase in the vestibulocochlear system of mice. Brain Res 813: 97-102.
  • Hiruma H, Saito A, Kusakabe T, Takenaka T, Kawakami T (2002) Neuropeptide Y inhibits axonal transport of particles in neurites of cultured adult mouse dorsal root ganglion cells. J Physiol 543: 85-97.
  • Ichikawa H, Helke CJ (1993) Distribution, origin and plasticity of galanin-immunoreactivity in the rat carotid body. Neuroscience 52: 757-767.
  • Inafuku S, Wu M, Kimura M, Nakayama M, Nakano T, Ishigami H (2000) Immunohistochemical demonstration of inducible nitric oxide and nuclear factor-kappa B with reference to age-related changes in the mouse spiral and vestibular ganglion. Okajimas Folia Anat Jpn 77: 125-131.
  • Iurato S, Luciano L, Franke K, Pannese E, Reale E (1974) Histochemical localization of acetylcholinesterase activity in the cochlear and vestibular ganglion cells. Acta Otolaryngol 78: 28-35.
  • Jin H (1992) [Immunohistochemical studies on the guinea pig’s vestibular ganglion cell-with reference to the distribution of substance P and neurofilament]. Nippon Jibiinkoka Gakkai Kaiho 95: 391-399.
  • Kanonier G, Thurner KH, Scholtz A, Schrott-Fischer A (1996) Immunohistochemical Investigation on the Human Vestibular Ganglion. Otolaryngology – Head and Neck Surgery 115: 146.
  • Kevetter GA, Leonard RB (2002) Molecular probes of the vestibular nerve. II. Characterization of neurons in Scarpa’s ganglion to determine separate populations within the nerve. Brain Res 928: 18-29.
  • Kitamura K, Kimura RS (1983) Synaptic structures of the human vestibular ganglion. Adv Otorhinolaryngol 31: 118-134.
  • Kitamura K, Suzuki M (1989) Ultrastructural findings of the macaque monkey vestibular ganglion cells. Acta Otolaryngol (Suppl) 468: 23-29.
  • Landry M, Aman K, Dostrovsky J, Lozano AM, Carlstedt T, Spenger C, Josephson A, Wiesenfeld-Hallin Z, Hokfelt T (2003) Galanin expression in adult human dorsal root ganglion neurons: initial observations. Neuroscience 117: 795-809.
  • Lazarov NE (2002) Comparative analysis of the chemical neuroanatomy of the mammalian trigeminal ganglion and mesencephalic trigeminal nucleus. Prog Neurobiol. 66: 19-59.
  • Li GQ, Kevetter GA, Leonard RB, Prusak DJ, Wood TG, Correia MJ (2007) Muscarinic acetylcholine receptor subtype expression in avian vestibular hair cells, nerve terminals and ganglion cells. Neuroscience 146: 384-402.
  • Lin CT, Young YH, Cheng PW, Lue JH (2010) Effects of gentamicin on guinea pig vestibular ganglion function and on substance P and neuropeptide Y. J Chem Neuroanat 40: 286-292.
  • Maklad A, Fritzsch B (1999) Incomplete segregation of endorgan-specific vestibular ganglion cells in mice and rats. J Vestib Res 9: 387-399.
  • Maklad A, Fritzsch B (2002) The developmental segregation of posterior crista and saccular vestibular fibers in mice: a carbocyanine tracer study using confocal microscopy. Brain Res Dev Brain Res 135: 1-17.
  • Maklad A, Kamel S, Wong E, Fritzsch B (2010) Development and organization of polarity-specific segregation of primary vestibular afferent fibers in mice. Cell Tissue Res 340: 303-321.
  • Merighi A, Kar S, Gibson SJ, Ghidella S, Gobetto A, Peirone SM, Polak JM (1990) The immunocytochemical distribution of seven peptides in the spinal cord and dorsal root ganglia of horse and pig. Anat Embryol (Berl) 181: 271-280.
  • Perachio AA, Kevetter GA (1985) Morphological characteristics of neurons in the inferior and superior divisions of scarpa’s ganglion in the gerbil. Prog Clin Biol Res 176: 263-277.
  • Philippe C, Cuber JC, Bosshard A, Rampin O, Laplace JP, Chayvialle JA (1990) Galanin in porcine vagal sensory nerves: immunohistochemical and immunochemical study. Peptides 11: 989-993.
  • Popper P, Ishiyama A, Lopez I, Wackym PA (2002a) Calcitonin gene-related Peptide and choline acetyltransferase colocalization in the human vestibular periphery. Audiol Neurootol 7: 298-302.
  • Popper P, Siebenreich W, Erbe Ch, Samuels T, Lerch-Gaggl A, Wackym PA (2007) Neuropeptides and Neuropeptide Receptors in the Rat Vestibular Periphery. http: //www.aro org/archives/2007/2007-620 html
  • Popper P, Wackym PA, Siebenreich W, Cristobal R (2002b) Distribution of Opioid Receptors in the Vestibular Periphery. pdf
  • Richter E, Spoendlin H (1981) Scarpa’s ganglion in the cat. Acta Otolaryngol 92: 423-431.
  • Takumida M, Anniko M (1998) Localization of nitric oxide synthase isoforms (NOS I, II and III) in the vestibular end organs of the guinea pig. ORL J Otorhinolaryngol Relat Spec 60: 67-72.
  • Tata AM, De Stefano ME, Srubek TG, Vilaro MT, Levey AI, Biagioni S (2004) Subpopulations of rat dorsal root ganglion neurons express active vesicular acetylcholine transporter. J Neurosci Res 75: 194-202.
  • Thurner KH, Kanonier G, Wimmer M, Helbock C, Ulmer H, Schrott-Fischer A (1996) Morphometric and ultrastructural findings on human vestibular ganglion cells. ORL J Otorhinolaryngol Relat Spec 58: 213-218.
  • Tritto S, Botta L, Zampini V, Zucca G, Valli P, Masetto S (2009) Calyx and dimorphic neurons of mouse Scarpa’s ganglion express histamine H3 receptors. BMC Neurosci 10: 70.
  • Usami S, Hozawa J, Shinkawa H, Tazawa M, Jin H, Matsubara A, Fujita S, Ylikoski J (1993) Immunocytochemical localization of substance P and neurofilament proteins in the guinea pig vestibular ganglion. Acta Otolaryngol (Suppl) 503: 127-131.
  • Usami S, Hozawa J, Tazawa M, Jin H, Matsubara A, Fujita S (1991) Localization of substance P-like immunoreactivity in guinea pig vestibular endorgans and the vestibular ganglion. Brain Res 555: 153-158.
  • Vega R, Soto E (2003) Opioid receptors mediate a postsynaptic facilitation and a presynaptic inhibition at the afferent synapse of axolotl vestibular hair cells. Neuroscience 118: 75-85.
  • Wackym PA, Popper P, Micevych PE (1993) Distribution of calcitonin gene-related peptide mRNA and immunoreactivity in the rat central and peripheral vestibular system. Acta Otolaryngol 113: 601-608.
  • Wakisaka S, Kajander KC, Bennett GJ (1992) Effects of peripheral nerve injuries and tissue inflammation on the levels of neuropeptide Y-like immunoreactivity in rat primary afferent neurons. Brain Res 598: 349-352.
  • Wicke W, Firbas W, Rameis R, Sinzinger H (1976) On the acetylcholinesterase activity in the vestibular ganglion of the rat. Acta Morphol Neerl Scand 14: 31-38.
  • Wiesenfeld-Hallin Z, Xu XJ (1998) Galanin in somatosensory function. Ann N Y Acad Sci 863: 383-389.
  • Yamashita H, Bagger-Sjoback D, Sekitani T (1992) Distribution of tyrosine hydroxylase-like immunofluorescence in guinea pig vestibular ganglia and sensory areas. Auris Nasus Larynx 19: 63-68.
  • Yamashita H, Sekitani T (1990) The demonstration of choline acetyltransferase activity in cultured vestibular ganglion cells from the fetal rat. Eur Arch Otorhinolaryngol 247: 229-231.
  • Yamashita H, Sekitani T, Okinaka Y, Inokuma T, Shimogori H, Moriya K, Hara H (1991) Cell culture study of the vestibular ganglion cells. Morphology and immunohistochemical activity. Acta Otolaryngol Suppl 481: 153-157.
  • Ylikoski J, Belal A, Jr. (1981) Human vestibular nerve morphology and labyrinthectomy. Am J Otolaryngol 2: 81-93.
  • Ylikoski J, Pirvola U, Happola O (1993) Characterization of the vestibular and spiral ganglion cell somata of the rat by distribution of neurofilament proteins. Acta Otolaryngol (Suppl) 503: 121-126.
  • Zhang X, Xu ZO, Shi TJ, Landry M, Holmberg K, Ju G, Tong YG, Bao L, Cheng XP, Wiesenfeld-Hallin Z, Lozano A, Dostrovsky J, Hokfelt T (1998) Regulation of expression of galanin and galanin receptors in dorsal root ganglia and spinal cord after axotomy and inflammation. Ann N Y Acad Sci 863: 402-413.
  • Zhuo H, Ichikawa H, Helke CJ (1997) Neurochemistry of the nodose ganglion. Prog Neurobiol 52: 79-107

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.