Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 29 | 2 |
Tytuł artykułu

Contrasted effects of biochar on maize growth and N use efficiency depending on soil conditions

Treść / Zawartość
Warianty tytułu
Języki publikacji
Biochar amendment may improve crop growth through its nutrients and indirect fertility. However, this improvement varies in a wide range of biochars, crops, and soils. Our objectives were to determine the response of crop growth to biochar amendment and to assess the N use efficiency relative to the biochar and the soil types. In this pot experiment, we investi-gated five typical agricultural soils in China amended with two biochars. Four treatments were designed: the soil itself as a control, the soil amended with 1% biochar, the soil with fertilizer NPK, and the soil with added biochar and fertilizer. Biochar amendment increased the maize biomass and the N use efficiency in the red soil (p<0.05) but not in the other four soils (p>0.05). In the red soil, the biomass under biochar+NPK was 2.67-3.49 times higher than that of only NPK, and 1.48-1.62 times higher than that of only biochar amendment, 21-36 and 35-42% of which were contributed from biochar fertility and indirect fertility, respectively. This study indicates that biochar amendment is very plausible for the red soil but has a minor or even negative effect on the other four soils in China.
Słowa kluczowe
Opis fizyczny
  • State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
  • University of Chinese Academy of Sciences, Beijing 100049, China
  • State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
  • Agricultural Resource and Environment Research, Guangxi Academy of Agricultural Sciences, 530007, China
  • Asai H., Samson B.K., Stephan H.M., Songyikhangsuthor K., Homma K., Kiyono Y., Inoue Y., Shiraiwa T., and Horie T., 2009. Biochar amendment techniques for upland rice production in Northern Laos. Field Crops Res., 111(1-2), 81-84.
  • Blackwell P., Riethmuller G., and Collins M., 2009. Biochar application to soil. In: Biochar for Environmental Management: Science and Technology (Eds J. Lehmann, S. Joseph). Earthscan, London, UK.
  • Chan K.Y., Zwieten V.L., Meszaros I., Downie A., and Joseph S., 2007. Agronomic values of greenwaste biochar as a soil amendment. Australian J. Soil Res., 45(8), 629.
  • Cheng C.H., Lehmann J., Thies J.E., Burton S.D., and Engelhard M.H., 2006. Oxidation of black carbon by bio-tic and abiotic processes. Organic Geochemistry, 37, 1477-1488.
  • Clough T.J., Bertram J.E., Ray J.L., Condron L.M., O’Callaghan M., Sherlock R.R., and Wells N.S., 2010. Unweathered wood biochar impact on nitrous oxide emissions from a bovine-urine-amended pasture soil soil. Sci. Soc. Am. J., 74, 852, doi:10.2136/sssaj2009.0185
  • Glaser B., Lehmann J., and Zech W., 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - a review. Biol. Fert. Soils, 35, 219- 230, doi:10.1007/s00374-002-0466-4
  • Gong Z.T., Zhang G.L., and Chen Z.C., 2007. Pedogenesis and Soil Taxonomy (in Chinese). Science Press, Nanjing, China.
  • Gueerena D., Lehmann J., Hanley K., Enders A., and Hyland CandRiha S., 2013. Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system Plant Soil, 365, 239-254, doi:10.1007/s11104-012-1383-4
  • Haefele S.M., Konboon Y., Wongboon W., Amarante S., Maarifat A.A., Pfeiffer E.M., and Knoblauch C., 2011. Effects and fate of biochar from rice residues in rice-based systems. Field Crops Res., 121, 430-440.
  • Kammann C.I., Linsel S., Goessling J.W., and Koyro H.W., 2011. Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil-plant relations. Plant Soil, 345, 195-210.
  • Karer J., Wimmer B., Zehetner F., Kloss S., and Soja G., 2013. Biochar application to temperate soils: effects on nutrient uptake and crop yield under field conditions Agric. Food Sci., 22, 390-403.
  • Kookana R.S., Sarmah A.K., Van Zwieten L., Krull E., and Singh B., 2011. Biochar application to soil: agronomic and environmental benefits and unintended consequences. Advances Agronomy, 112, 103-143.
  • Laird D., Fleming P., Wang B., Horton R., and Karlen D., 2010. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma, 158, 436-442.
  • Lehmann J., 2007. Nature a handful of carbon. Nature, 447, 143-144.
  • Lehmann J., Pereira da Silva J., Steiner C., Nehls T., Zech W., and Glaser B., 2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil, 249, 343-357.
  • Liang B., Lehmann J., Solomon D., Kinyangi J., Grossman J., O’Neill B., Skjemstad J.O., Thies J., Luizão F.J., Petersen J., and Neves E.G., 2006. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J., 70, 1719-1730, doi:10.2136/sssaj2005.0383
  • Lu W.W., Ding W.X., Zhang J.H., Li Y., Luo J.F., Bolan N., and Xie Z.B., 2014. Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil: A negative priming effect. Soil Biol. Biochem., 76, 12-21, doi:10.1016/j.soilbio.2014.04.029
  • Luo F., Song J., Xia W.X., Dong M.G., Chen M.F., and Soudek P., 2014. Characterization of contaminants and evaluation of the suitability for land application of maize and sludge biochars. Environ. Sci. Pollut. Res. Int., 21, 8707-8717, doi:10.1007/s11356-014-2797-8
  • Mikutta R., Kleber M., Kaiser K., and John R., 2005. Review: Organic matter removal from soils using hydrogen pero-xide, sodium hypochloride, and disodium perodisulfate. Soil Sci. Soc. Am. J., 69, 120-135.
  • Oguntunde P.G., Abiodun B.J., Ajayi A.E., and van de Giesen N., 2008. Effects of charcoal production on soil physical properties in Ghana. J. Plant Nutrition Soil Sci., 171, 591- 596, doi:10.1002/jpln.200625185
  • Oguntunde P.G., Fosu M., Ajayi A.E., and van de Giesen N., 2004. Effects of charcoal production on maize yield, chemical properties and texture of soil. Biol. Fert. Soils, 39, 295-299, doi:10.1007/s00374-003-0707-1
  • Peng X., Ye L.L., Wang C.H., Zhou H., and Sun B., 2011. Temperature- and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an Ultisol in southern China. Soil Till. Res., 112, 159-166, doi:10.1016/j.still.2011.01.002
  • Prendergast-Miller M., Duvall M., and Sohi S.P., 2011. Localisation of nitrate in the rhizosphere of biochar-amended soils. Soil Biol. Biochem., 43, 2243-2246.
  • Steiner C., Teixeira W.G., Lehmann J., Nehls T., Macêdo J.L.V., Blum W.E.H., and Zech W., 2007. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil, 291, 275-290, doi:10.1007/ s11104-007-9193-9
  • Taghizadeh-Toosi A., Clough T.J., Sherlock R.R., and Condron L.M., 2012. Biochar adsorbed ammonia is bioavailable Plant Soil, 350, 57-69.
  • Uzoma K., Inoue M., Andry H., Fujimaki H., Zahoor A., and Nishihara E., 2011. Effect of cow manure biochar on maize productivity under sandy soil condition Soil Use Manag., 27, 205-212.
  • Van Zwieten L., Kimber S., Morris S., Chan K.Y., Downie A., Rust J., Joseph S., and Cowie A., 2009. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil, 327, 235-246, doi:10.1007/s11104-009-0050-x
  • Yuan J.H. and Xu R.K., 2011. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol Soil Use Manag., 27, 110-115.
  • Zhang A., Cui L., Pan G., Li L., Hussain Q., Zhang X., Zheng J., and Crowley D., 2010. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain. China Agric. Ecosystems Environ., 139, 469-475, doi:10.1016/j.agee.2010.09.003
  • Zhu Q.H., Peng X.H., Huang T.Q., Xie Z.B., and Holden N.M., 2014. Effect of biochar addition on maize growth and nitrogen use efficiency in acidic red soils. Pedosphere, 24, 699- 708, doi:
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.