PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 17 | 1 |

Tytuł artykułu

Regional analysis of wind turbine-caused bat mortality

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Wind energy has been the fastest-growing renewable energy source in the world. Studies have estimated bat fatalities at wind facilities, but direct comparisons of results is difficult and can be misleading due to numerous differences in protocols and methods used. We had a unique opportunity to compare fatality estimates from three wind facilities in southeastern Wisconsin. These three facilities are located within two neighboring counties with similar land use and land cover, used similar post-construction study methodologies, have turbine models that are close in size and nameplate capacity, and all became operational within seven months of each other. Our objectives were to analyze bat mortality data across all three wind facilities to: 1) examine species composition; and 2) investigate whether select structural, habitat, and landscape features influence mortality at a fine and broad scale. Corrected estimates of bat mortality were higher than reported in most other previous research in Midwestern agricultural lands in the United States. Similarities within the data were shared by all three wind facilities, but differences across them included species composition of bat mortalities and raw and corrected number of bat carcasses recovered. Our analysis suggested that select habitat and landscape features were among the predictor variables that explained bat mortality at the broad scale. Given heterogeneity in mortality estimates within the upper Midwest region, we recommend that individual wind facilities conduct project-specific pre- and postconstruction monitoring rather than infer mortality effects based on published results from other wind facilities.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

17

Numer

1

Opis fizyczny

p.179-188,fig.,ref.

Twórcy

autor
  • Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 215 Russell Labs, Madison, WI 53706, USA
  • Minnesota Department of Natural Resources, 5463 West Broadway Avenue, Forest Lake, MN 55025, USA
autor
  • Biodiversity Research Center, Academia Sinica, Taipei, Taiwan (JL)
autor
  • Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
  • We Energies, Milwaukee, WI 53203, USA
autor
  • TRC Consulting, Inc., Gahanna, OH 43230, USA

Bibliografia

  • 1. F. Amorim , H. Rebelo , and L. Rodrigues . 2012. Factors influencing bat activity and mortality at a wind farm in the Mediterranean region. Acta Chiropterologica, 14: 439–457. Google Scholar
  • 2. E. B. Arnett , W. K. Brown , W. P. Erickson , J. K. Fielder , B. L. Hamilton , T. H. Henry , A. Jain , G. D. Johnson , J. Kerns , R. R. Koford , et al. 2008. Patterns of bat fatalities at wind energy facilities in North America. Journal of Wild life Mana gement, 72: 61–78. Google Scholar
  • 3. E. F. Baerwald , and R. M. R. Barclay . 2009. Geographic variation in activity and fatality of migratory bats at wind energy facilities. Journal of Mammalogy, 90: 1341–1349. Google Scholar
  • 4. E. F. Baerwald , and R. M. R. Barclay . 2011. Patterns of fatality and activity of migratory bats at a wind energy facility in Alberta, Canada. Journal of Wildlife Management, 75: 1103–1114. Google Scholar
  • 5. E. Bernard , A. Paese , R. B. Machado , and L. M. De Souza Aguiar . 2014. Blown in the wind: Bats and wind farms in Brazil. Brazilian Journal of Nature Conservation, 12: 106–111. Google Scholar
  • 6. BHE Environmental. 2011. Post-construction bird and bat mortality study, Cedar Ridge wind farm, Fond du Lac County, Wisconsin. Final Report filed with the Wisconsin Public Service Commission. Available at http://psc.wi.gov/apps35/ERF_view/viewdoc.aspx?docid=146174. Google Scholar
  • 7. K. L. Boughey , I. R. Lake , K. A. Haysom , and P. M. Dolman . 2011. Effects of landscape-scale broadleaved woodland con figuration and extent on roost location for six bat species across the UK. Biological Conservation, 144: 2300–2310. Google Scholar
  • 8. A. Camina 2012. Bat fatalities at wind farms in northern Spain - lessons to be learned. Acta Chiropterologica, 14: 205–212. Google Scholar
  • 9. P. M. Cryan , and R. M. R. Barclay . 2009. Causes of bat fatalities at wind turbines: hypotheses and predictions. Journal of Mammalogy, 90: 1330–1340. Google Scholar
  • 10. W. Erickson , K. Kronner , and B. Gritski . 2005. Nine Canyon Phase II Wind Power Project, Fall 2004 Avian and Bat Monitoring Report: July 2004–October 2004. Prepared for the Nine Canyon Technical Advisory Committee, Energy Northwest, by Western Ecosystems Technology, Inc. (WEST), Cheyenne, Wyoming and Northwest Wildlife Con sultants, Inc. Google Scholar
  • 11. E. Fuentes-Montemayor , D. Goulson , L. Cavin , J. M. Wallace , and K. J. Park . 2013. Fragmented woodlands in agricultural landscapes: The influence of woodland character and landscape context on bats and their insect prey. Agriculture, Ecosystems, and Environment, 172: 6–15. Google Scholar
  • 12. P. Georgiakakis , E. Kret , B. Carcamo , B. Doutau , A. Kafka Letou-Diez , D. Vasilakis , and E. Papadatou . 2012. Bat fatalities at wind farms in north-eastern Greece. Acta Chiropterologica, 14: 459–468. Google Scholar
  • 13. S. M. Grodsky 2010. Aspects of bird and bat mortality at a wind energy facility in southeastern Wisconsin: impacts, relationships, and cause of death. M.S. Thesis, University of Wisconsin, Madison, USA, 99 pp. Google Scholar
  • 14. S. M. Grodsky , and D. Drake . 2011. Assessing bird and bat mortality at the Forward Energy Center. Final Report filed with the Wisconsin Public Service Commission. Available at http://psc.wi.gov/apps35/ERF_view/viewdoc.aspx?docid=152052. Google Scholar
  • 15. S. M. Grodsky , M. J. Behr , A. Gendler , D. Drake. B. D. Dieterle , R. J. Rudd , and N. L. Walrath . 2011. Investigating the causes of death for wind turbine-associated bat fatalities. Journal of Mammalogy, 92: 917–925. Google Scholar
  • 16. S. M. Grodsky , C. S. Jennelle , D. Drake , and T. Virzi . 2012. Bat mortality at a wind energy facility in southeastern Wisconsin. Wildlife Society Bulletin, 36: 773–783. Google Scholar
  • 17. M. A. Hayes 2013. Bats killed in large numbers at United States wind energy facilities. Bioscience, 63: 975–979. Google Scholar
  • 18. M. M. P. Huso 2010. An estimator of wildlife fatality from observed carcasses. Environmetrics, 22: 318–329. Google Scholar
  • 19. M. M. P. Huso , and D. Dalthorp . 2014. A comment on ‘Bats killed in large numbers at United States wind facilities’. Bioscience, 64: 546–547. Google Scholar
  • 20. J. B. Johnson , J. E. Gates , and N. P. Zegre . 2011. Monitoring seasonal bat activity on a coastal barrier island in Maryland, USA. Environmental Monitoring Assessment, 173: 685–699. Google Scholar
  • 21. T. H. Kunz , E. B. Arnett , W. P. Erickson , A. R. Hoar , G. D. Johnson , R. P. Larkin , M. D. Strickland , R. W. Thresher , and M. D. Tuttle . 2007. Ecological impacts of wind energy development on bats: questions, research needs, and hypotheses. Frontiers in Ecology and the Environ ment, 5: 315–324. Google Scholar
  • 22. W. P. Kuvlesky Jr. , L. A. Brennan , M. L. Morrison , K. K. Boydston , B. M. Ballard , and F. C. Bryant . 2007. Wind energy development and wildlife conservation: challenges and opportunities. Journal of Wildlife Management, 71: 2487–2498. Google Scholar
  • 23. S. Parsons , and P. Battley . 2013. Impacts of wind energy developments on wildlife: a southern hemisphere perspective. New Zealand Journal of Zoology, 40: 1–4. Google Scholar
  • 24. F. Peste , A. Paula , L. P. Da Silva , J. Bernardino , P. Pereira , M. Mascarenhas , H. Costa , J. Vieira , C. Bastos , C. Fonseca , M. , and J. R. Pereira . 2015. How to mitigate impacts of wind farms on bats? A review of potential conservation measures in the European context. Environmental Impact Assessment Review, 51: 10–22. Google Scholar
  • 25. M. D. Piorkowski , A. J. Farnsworth , M. Fry , R. A. Rohrbaugh , J. W. Fitzpatrick , and K. V. Rosenberg . 2012. Research priorities for wind energy and migratory wildlife. Journal of Wildlife Management, 76: 451–456. Google Scholar
  • 26. J. Rydell , L. Bach , M. Dubourg-Savage , M. Green , L. RodriGues , and A. Hedenstrom . 2010a. Bat mortality at wind turbines in northwestern Europe. Acta Chiropterologica, 12: 261–274. Google Scholar
  • 27. J. Rydell , L. Bach , M. Dubourg-Savage , M. Green , L. Rodrigues , and A. Hedenstrom . 2010. Mortality of bats at wind turbines links to nocturnal insect migration? European Journal of Wildlife Research, 56: 823–827. Google Scholar
  • 28. P. Shoenfeld 2013. Comparing bird and bat fatality-rate estimates among North American wind-energy projects. Wildlife Society Bulletin, 37: 19–33. Google Scholar
  • 29. K. S. Smallwood 2007. Estimating wind turbine-caused bird mortality. Journal of Wildlife Management, 71: 2781–2791. Google Scholar
  • 30. K. S. Smallwood 2013. Comparing bird and bat fatality-rate estimates among North American wind-energy projects. Wild life Society Bulletin, 37: 19–33. Google Scholar
  • 31. S. Tekiela 2005. Mammals of Wisconsin field guide. Adventure Publications, Cambridge, Minnesota, 303 pp. Google Scholar
  • 32. C. C. Voigt , L. S. Lehnert , G. Petersons , F. Adorf , and L. Bach . 2015. Wildlife and renewable energy: German politics cross migratory bats. European Journal of Wildlife Research, 61: 213–219. Google Scholar

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-05bfc7f5-d2a2-4922-a39d-894232f05c4d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.