Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 24 | 3 |
Tytuł artykułu

Modern modeling of water hammer

Treść / Zawartość
Warianty tytułu
Języki publikacji
Hydraulic equipment on board ships is common. It assists in the work of: steering gear, pitch propellers, watertight doors, cargo hatch covers, cargo and mooring winches, deck cranes, stern ramps etc. The damage caused by transient flows (which include among others water hammer) are often impossible to repair at sea. Hence, it is very important to estimate the correct pressure runs and associated side effects during their design. The presented study compares the results of research on the impact of a simplified way of modeling the hydraulic resistance and simplified effective weighting functions build of two and three-terms on the estimated results of the pressure changes. As it turns out, simple effective two-terms weighting functions are able to accurately model the analyzed transients. The implementation of the presented method will soon allow current automatic protection of hydraulic systems of the adverse effects associated with frequent elevated and reduced pressures
Słowa kluczowe
Opis fizyczny
  • West Pomeranian University of Technology in Szczecin, Al.Piastow 41, 71-065 Szczecin, Poland
  • 1. Adamkowski A., Lewandowski M.: A new method for numerical prediction of liquid column separation accompanying hydraulic transients in pipelines, J. Fluids Eng., 131, 7, 2009.
  • 2. Adamkowski A., Lewandowski M.: Experimental examination of unsteady friction models for transient pipe flow simulation, J. Fluids Eng., 128, pp. 1351-1363, 2006.
  • 3. Adamkowski A., Lewandowski M.: Investigation of hydraulic transients in a pipeline with column separation, J. Hydraulic Eng., 138, 11, pp. 935-944, 2012.
  • 4. Górski Z.: Construction and operation of marine hydraulic machinery, Trademar, Gdynia, 2008.
  • 5. Hadj-Taïeb L., Hadj-Taïeb E.: Modelling vapour cavitation in pipes with fluid–structure interaction, International Journal of Modelling and Simulation, 29, 3, pp. 263-270, 2009
  • 6. Hadj-Taïeb L., Hadj-Taïeb E.: Numerical simulation of transient flows in viscoelastic pipes with vapour cavitation, International Journal of Modelling and Simulation, 29, 2, pp. 206-213, 2009.
  • 7. Henclik S.: A numerical approach to the standard model of water hammer with fluid-structure interaction, Journal of Theoretical and Applied Mechanics, 53, 3, pp. 543-555, 2015.
  • 8. Johnston D.N.: Efficient methods for numerical modelling of laminar friction in fluid lines. J. Dynamic Systems Measurement and Control, ASME, 128, 4, pp. 829 – 834, 2006
  • 9. Ka rad žić U. et a l.: Valve-induced water hammer and column separation in a pipeline apparatus, Strojniški Vestnik – Journal of Mechanical Engineering, 60, 11, pp. 742-754, 2014.
  • 10. Keramat A. et al.: Fluid-structure interaction with pipe-wall viscoelasticity during water hammer, Journal of Fluids and Structures, 28, 1, pp. 434-456, 2012.
  • 11. Pezzinga G.: Evaluation of time evolution of mechanical parameters of polymeric pipes by unsteady flow runs, Journal of Hydraulic Engineering, 140, 12, paper 04014057, 2014.
  • 12. Qiu Y. et al.: Suppressing water hammer of ship steering systems with hydraulic accumulator. Proc IMechE Part E: J Process Mechanical Engineering, Vol. 228 (2), pp. 136–148, 2014
  • 13. Reddy H.P. et al.: Estimation of decay coefficients for unsteady friction for instantaneous, acceleration-based models, Journal of Hydraulic Engineering, 138, pp. 260-271, 2012
  • 14 . Soares A.K. et al.: Investigation of transient vaporous cavitation: experimental and numerical analyses, Procedia Engineering, 119, pp. 235-242, 2015.
  • 15. Storli P., Nielsen T.: Transient friction in pressurized pipes. I: investigation of Zielke’s model, Journal of Hydraulic Engineering, 137, 5, pp. 577-584, 2011.
  • 16. Storli P., Nielsen T.: Transient friction in pressurized pipes. II: two-coefficient instantaneous acceleration–based model, Journal of Hydraulic Engineering, 137, 6, pp. 679-695, 2011.
  • 17. Urbanowicz, K. et al.: Universal weighting function in modeling transient cavitating pipe flow, J. Theoretical and Applied Mechanics, 50, 4, pp. 889-902, 2012.
  • 18. Urbanowicz, K., Zarzycki, Z.: Convolution Integral in Tra n s i e n t P i p e F l o w, Proc. of the XXth Fluid Mechanics Conference KKMP2012, Gliwice, Poland, 17-20 September, on CD, 2012.
  • 19. Urbanowicz, K., Zarzycki, Z.: Improved lumping friction model for liquid pipe flow, J. Theoretical and Applied Mechanics, 53, 2, pp. 295-305, 2015.
  • 20. Urbanowicz, K.: New approximation of unsteady friction weighting functions. Proc. of the 11th International Conference on Pressure Surges, Lisbon, Portugal, October 24-26, pp. 477 – 492, 2012.
  • 21. Vardy, A.E., Brown, J.M.B.: Approximation of turbulent wall shear stresses in highly transient pipe flows, Journal of Hydraulic Engineering, 133, 11, pp. 1219-1228, 2007.
  • 22. Vardy, A.E., Brown, J.M.B.: Transient turbulent friction in fully rough pipe flows, Journal of Sound and Vibration, 270, pp. 233-257, 2004.
  • 23. Vardy, A.E., Brown, J.M.B.: Transient turbulent friction in smooth pipe flows, Journal of Sound and Vibration, 259, pp. 1011-1036, 2003.
  • 24. Wylie, E.B., Streeter, V.L.: Fluid transients in systems, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1993.
  • 25. Zanganeh R. et al.: Fluid-structure interaction with viscoelastic supports during waterhammer in a pipeline, Journal of Fluids and Structures, 54, April, pp. 215-234, 2015
  • 26. Zielke W.: Frequency-dependent friction in transient pipe flow, Journal of Basic Engineering, ASME, 90, pp. 109–115, 1968
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.