PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 18 | 2 |
Tytuł artykułu

The role of passive calcium influx through the cell membrane in galvanotaxis

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Passive calcium influx is one of the theories to explain the cathodal galvanotaxis of cells that utilize the electric field to guide their motion. When exposed to an electric field, the intracellular fluid becomes polarized, leading to positive charge accumulation on the cathodal side and negative charge accumulation on the anodal side. The negative charge on the anodal side attracts extracellular calcium ions, increasing the anodal calcium concentration, which is supposed to decrease the mobile properties of this side. Unfortunately, this model does not capture the Ca2+ dynamics after its presentation to the intracellular fluid. The ions cannot permanently accumulate on the anodal side because that would build a potential drop across the cytoplasm leading to an ionic current, which would carry positive ions (not only Ca2+) from the anodal to the cathodal part through the cytoplasm. If the cytoplasmic conductance for Ca2+ is low enough compared to the membrane conductance, the theory could correctly predict the actual behavior. If the ions move through the cytoplasm at a faster rate, compensating for the passive influx, this theory may fail. This paper contains a discussion of the regimes of validity for this theory.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
18
Numer
2
Opis fizyczny
p.187-199,fig.,ref.
Twórcy
autor
  • Department of Chemistry, Silesian University of Technology, ks.M. Strzody 9, 44-100 Gliwice, Poland
Bibliografia
  • 1. Ananthakrishnan, R. and Ehrlicher, A. The forces behind cell movement. Int. J. Biol. Sci. 3 (2007) 303-317.
  • 2. Korohoda, W., Kucia, M., Wybieralska, E., Wianecka-Skoczeń, M., Waligórska, A., Drukała, J. and Madeja, Z. Solute-dependent activation of cell motility in strongly hypertonic solutions in Dictyostelium discoideum, Human Melanoma HTN-140 cells and Walker 256 Carcinosarcoma cells. Cell. Mol. Biol. Lett. 16 (2011) 412-430.
  • 3. Shanley, L.J., Walczysko, P., Bain, M., MacEwan, D.J. and Zhao, M. Influx of extracellular Ca2+ is necessary for electrotaxis in Dictyostelium. J. Cell Sci. 119 (2006) 4741-4748.
  • 4. Djamgoz, M.B.A. Directional movement of rat prostate cancer cells in direct-current electric field: involvement of voltage-gated Na+ channel activity. J. Cell Sci. 114 (2001) 2697-2705.
  • 5. Alt, W., Deutsch, A. and Dunn, G. Dynamics of cell and tissue motion. Birkhauser, Basel, 1997.
  • 6. Bray, D. Cell movements: from molecules to motility. 2nd edition, Garland Publishing, New York, 2000.
  • 7. Barnes, F.S. and Greenbaum. B. (Eds). Handbook of biological effects of electromagnetic fields. CRC press, Boca Raton, 2007.
  • 8. Nuccitelli, R. A role for endogenous electric fields in wound healing. Curr. Top. Dev. Biol. 58 (2003) 1-26.
  • 9. McCaig, C.D., Rajnicek, A.M., Song, B. and Zhao, M. Controlling cell behavior electrically: current views and future potential. Physiol. Rev. 85 (2005) 943-978.
  • 10. Mycielska, M.E. and Djamgoz, M.B.A. Cellular mechanisms of directcurrent electric field effects: galvanotaxis and metastatic disease. J. Cell Sci. 117 (2004) 1631-1639.
  • 11. Fang, K.S., Behnom, F., Nuccitelli, R. and Isseroff, R.R. Migration of human keratinocytes in electric fields requires growth factors and extracellular calcium. J. Invest. Dermatol. 111 (1998) 751-756.
  • 12. Trollinger, D.R., Isseroff, R.R. and Nuccitelli, R. Calcium channel blockers inhibit galvanotaxis in human keratinocytes. J. Cell. Physiol. 193 (2002) 1-9.
  • 13. Aonuma, M., Kadano, T. and Kawano, T. Inhibition of anodic galvanotaxis of Green Paramecia by T-type calcium channel inhibitors. Z. Naturforsch. 62c (2007) 93-102.
  • 14. Wang, G.X. and Poo, M.M. Requirement of TRPC channels in netrin-1- induced chemotropic turning of nerve growth cones. Nature 434 (2005) 898-904.
  • 15. Torossian, F., Bisson, A., Vannier, J.P., Boyer, O. and Lamacz, M. TRPC expression in mesenchymal cells. Cell. Mol. Biol. Lett. 15 (2010) 600-610.
  • 16. Cooper, M.S. and Keller, R.E. Perpendicular orientation and directional migration of amphibian neural crest cells in dc electrical fields. Proc. Natl. Acad. Sci. USA 81 (1984) 160-164.
  • 17. Chen, T.H. and Jaffe, L.F. Effects of membrane potential on calcium fluxes of pelvetia eggs. Planta 140 (1978) 63-67.
  • 18. Robinson, K.R. The responses of cells to electrical fields: a review. J. Cell Biol. 101 (1985) 2023-2027. 19. Isaacson, B.M. and Bloebaum, R.D. Bone bioelectricity: what have we learned in the past 160 years? J. Biomed. Mat. Res. A 95A (2010) 1270-1279.
  • 20. Gao, R.Ch., Zhang, X.D., Sun, Y.H., Kamimura, Y., Mogilner, A., Devreotes, P.N. and Zhao, M. Different roles of membrane potentials in electrotaxis and chemotaxis of Dictyostelium cells. Eukaryot. Cell 10 (2011) 1251-1256.
  • 21. Borys, P. On the biophysics of cathodal galvanotaxis in rat prostate cancer cells: Poisson-Nernst-Planck equation approach. Eur. Biophys. J. 41 (2012) 527-534.
  • 22. Coalson, R.D. and Kurnikova, M.G. Poisson-Nernst-Planck theory of ion permeation through biological channels. in: Biological membrane ion channels (Chung, S.H., Andersen, O.S. and Krishnamurthy, V. Eds.). Springer, New York, 2007, 449-485.
  • 23. Kurnikova, M.G., Coalson, R.D., Graf, P. and Nitzan, A. A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the Gramicidin A channel. Biophys. J. 76 (1999) 642-656.
  • 24. Rubinstein, I. Electro-diffusion of ions. SIAM studies in applied mathematics. Philadelphia, 1990.
  • 25. Ni, M.J., Tao, W.Q. and Wang, S.J. Stability controllable second-order difference scheme for convection term. J. Therm. Sci. 7 (1998) 119-130.
  • 26. Abelson, P.H. and Duryee, W.R. Radioactive sodium permeability and exchange in frog eggs. Biol. Bull. 96 (1949) 205-217.
  • 27. Hodgkin, A.L. and Keynes, R.D. The mobility and diffusion coefficient of potassium in giant axons from Sepia. J. Physiol. 119 (1953) 513-528.
  • 28. Donahue, B.S. and Abercrombie, R.F. Free diffusion coefficient of ionic calcium in cytoplasm. Cell Calcium 8 (1987) 437-448.
  • 29. Lodish, H.F., Berk, A., Matsudaira, P., Kaiser C.A., Krieger, M., Scott, M.P., Zipursky, L. and Darnell, J. Molecular Cell Biology. Freeman, W.H. New York, 2003.
  • 30. Neher, E. and Sakmann, B. Single channel recording. Plenum, New York, 1995.
  • 31. Kager, H., Wasman, W.J. and Somjen, G.G. Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations. J. Neurophysiol. 84 (2000) 495-512.
  • 32. Zeng, J., Borchman, D. and Paterson, C.A. Calcium permeability in large unilamellar vesicles prepared from bovine lens cortical lipids. Exp. Eye Res. 64 (1997) 115-120.
  • 33. Obejero-Paz, C.A., Jones, S.W. and Scarpa, A. Multiple channels mediate calcium leakage in the A7r5 smooth muscle-derived cell line. Biophys. J. 32 (1998) 12-21.
  • 34. Di Leva, F., Domi, T., Fedrizzi, L., Lim, D. and Carafoli, E. The plasmamembrane Ca2+ ATPase of animal cells: Structure, function and regulation. Arch. Biochem. Biophys. 476 (2008) 65-74.
Uwagi
rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-057afce7-ef7d-4782-bd01-417ec517cf2e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.