Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników


2015 | 73 |

Tytuł artykułu

Shikimate dehydrogenase (E.C. 1.1.1. 25 ShDH) alleles as potential markers for flowering phenology in Pinus sylvestris

Treść / Zawartość

Warianty tytułu

Języki publikacji



The aims of this study were 1) to determine the variability in the flowering phenology of Scots pine (Pinus sylvestris L.) clones in a seed orchard and 2) to compare the genetic structure and genetic markers (13 isozyme loci and 5 chloroplast and 3 nuclear DNA microsatellite loci) among groups of clones that are differentiated by flowering phenology. Using the timing of male inflorescence development, 57 plus trees represented by their clones in a seed orchard were classified into three phenological groups: early-, intermediate-, and late-flowering. The microsatellites showed no significant differences in the genetic structure of the analyzed phenological groups. However, the frequency of allele 2 at the shikimate dehydrogenase A locus (ShDH A 2) differed significantly between the groups of early- and late-flowering trees and between the groups of intermediate- and late-flowering trees. In addition, a significant difference in the frequencies of the genotype ShDH A 11 was observed between the intermediate- and late-flowering groups. Nei’s genetic distance indicated that the late-flowering group was the most genetically distant among the phenological groups. These results suggest that the ShDH A locus might be considered as isoenzymatic marker that differentiates these flowering groups of Scots pine clones. At several isozyme and DNA loci, the presence of private alleles in each group of pines was observed. However, these alleles cannot serve as markers of Scots pine flowering time because of their low frequencies.







Opis fizyczny



  • Genetics Department, Institute of Experimental Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
  • Forest Protection Department, Forest Research Institute, Braci Lesnej 3, Sekocin Stary, 05-090 Raszyn, Poland
  • Genetics Department, Institute of Experimental Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
  • Genetics Department, Institute of Experimental Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland


  • Auckland L., Bui T., Zhou Y., Shepherd M., Williams C. 2002. Conifer microsatellite handbook. College Station, Texas A&M University, Texas.
  • Boes T.K., Brandle J.R., Lovett W.R. 1991. Characterization of flowering phenology and seed yield in a Pinus sylvestris clonal seed orchard in Nebraska. Canadian Journal of Forest Research 21: 1721–1729.
  • Burczyk J., Chalupka W. 1997. Flowering and cone production variability and its effect on parental balance in Scots pine clonal seed orchard. Annals of Forest Science 54: 129–144.
  • Casa A.M., Mitchell S.E., Hamblin M.T., Sun H., Bowers J.E., Paterson A.H., Aquadro C.F., Kresovich S. 2005. Diversity and selection in sorghum: Simultaneous analyses using simple sequence repeats. Theoretical and Applied Genetics 111: 23–30.
  • Chung M.S. 1981a. Flowering characteristics of Pinus sylvestris with special emphasis on the reproductive adaptation to local temperature factor. Acta Forestalia Fennica 169: 1–69.
  • Chung M.S. 1981b. Biochemical methods for determining population structure in Pinus sylvestris L. Acta Forestalia Fennica 173: 1–28.
  • Doyle J.J., Doyle J.L. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13–15.
  • Fucile G., Falconer S., Christendat D. 2008. Evolutionary diversification of plant shikimate kinase gene duplication. PloS Genetics 4: e1000292
  • Gömöry D., Bruchánik R., Longauer R. 2003. Fertility variation and flowering asynchrony in Pinus sylvestris: consequences for the genetic structure of progeny in seed orchard. Forest Ecology and Management 174: 117–126.
  • Hedrick P.W. 2011. Genetics of populations. Jones & Bartlett Publishers, pp. 316–324.
  • Hermann K.M., Weaver L.M. 1999. The shikimate pathway. Annual Review of Plant Physiology and Plant Molecular Biology 50: 473–503.
  • Ivanek O., Procházková Z., Matĕjka K. 2013. Analysis of the genetic structure of a model Scots pine (Pinus sylvestris) seed orchard for development of management strategies. Journal of Forest Science 59: 377–385.
  • Jonsson A., Ekberg I., Eriksson G. 1976. Flowering in a seed orchard of Pinus sylvestris L. Studia Forestalia Suecica 135: 1–38.
  • Karhu A., Hurme P., Karjalainen M., Karvonen P., Kärkkäinen K., Neale D., Savolainen O. 1996. Do molecular markers reflect patterns of differentiation in adaptive traits of conifers? Theoretical and Applied Genetics 93: 215–221.
  • Lazrek F., Roussel V., Ronfort J., Cardinet G., Chardon F., Aouani M.E., Huguet T. 2009. The use of neutral and non-neutral SSRs to analyse the genetic structure of a Tunisian collection of Medicago truncatula lines and to reveal associations with eco-environmental variables. Genetica 135: 391–402.
  • Muona O., Szmidt A. 1985. A multilocus study of natural populations of Pinus sylvestris. In: Population Genetics in Forestry. Gregorius H.R. (ed.). Springer-Verlag, New York, pp. 226–240.
  • Müller-Starck G. 1987. Genetic differentiation among seed samples from provenances of Pinus sylvestris L. Silvae Genetica 36: 232–238.
  • Nei M. 1972. Genetic distance between populations. American Naturalist 106: 283–292.
  • Nei M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590.
  • Neimane U., Baumanis I., Veinberga I., Šķipars V., Ruņģis D. 2009. Genetic aspects of phenological distinctions in Scots pine populations. Mežzinātne 19: 49–63.
  • Nielsen E.E., Hansen M.M., Meldrup D. 2006. Evidence of microsatellite hitch-hiking selection in Atlantic cod (Gadus morhua L.): implications for inferring population structure in nonmodel organisms. Molecular Ecology 15: 3219–3229.
  • Peakall R., Smouse P.E. 2006 GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6: 288–295.
  • Peakall R., Smouse P.E. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28: 2537–2539.
  • Provan J., Soranzo N., Wilson N.J., Goldstein D.B., Powell W. 1999. A low mutation rate for chloroplast microsatellites. Genetics 153: 943–947.
  • Prus-Głowacki W., Stephan B.R. 1994. Genetic variation of Pinus sylvestris from Spain in relation to other European populations. Silvae Genetica 43: 7–14.
  • Prus-Głowacki W., Urbaniak L., Bujas E., Curtu A. 2012. Genetic variation of isolated and peripheral populations of Pinus sylvestris (L.) from glacial refugia. Flora 207: 150 –158.
  • Puglisi S., Lovreglio R., Attolico M. 1999. Subpopulation differentiation along elevational transects within two Italian populations of Scots pine (Pinus sylvestris L.). Forest Genetics 6: 247–256.
  • Sarvas R. 1962. Investigations on the flowering and seed crop of Pinus sylvestris. Communicationes Instituti Forestalis Fenniae 53: 1–198.
  • Soranzo N., Provan J., Powell W. 1998. Characterization of microsatellite loci in Pinus sylvestris L. Molecular Ecology 7: 1260–1261.
  • Vendramin G.G., Lelli L., Rossi P., Morgante M. 1996. A set of primers for the amplification of 20 chloroplast microsatellites in Pinaceae. Molecular Ecology 5: 595–598.
  • Wasielewska M., Klemm M., Burczyk J. 2005. Genetic diversity and mating system of Scots pine plus trees. Dendrobiology 53: 57–62.
  • Yeh F.C., Yang R.C., Boyle T. 1999. POPGENE version 1.31. Microsoft Window–based Freeware for Population Genetic Analysis, University of Alberta. Edmonton, Canada.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.