PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 34 | 5 |

Tytuł artykułu

Silicon nutrition alleviates physiological disorders imposed by salinity in hydroponically grown canola (Brassica napus L.) plants

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The effects of Si nutrition on transpiration, leaf anatomy, accumulation of Na⁺, K⁺, Cl⁻, P, Fe and B and some reactive oxygen species related parameters were investigated in canola plants under salinity. Plants were grown hydroponically in growth chamber under controlled conditions at 0 and 100 mM NaCl each supplied with or without 1.7 mM silicon (Si) as sodium silicate. Salinity imposed significant reduction in growth parameters of plants like fresh weights of roots and shoots and leaf area. It also led to accumulation of Na⁺ and Cl⁻ and a decrease in the concentration of K⁺, P, B and Fe. Reduction of transpiration, stomatal density and specific leaf area in leaves and an increase in leaf thickness were amongst other symptoms in salt-affected plants. Salinity led to higher concentration of hydrogen peroxide, increased lipid peroxidation and decrease of catalase and peroxidase activity, which suggests the induction of oxidative stress in plants. Silicon nutrition could prevent toxic ions (Na⁺ and Cl⁻) accumulation while higher levels of essentialminerals like K⁺, P and Feweremaintained in plants. Consequently, silicon nutrition decreased oxidative stress in plants, evidenced by increase in antioxidant enzyme activity, reduction in hydrogen peroxide and lipid peroxidation.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

34

Numer

5

Opis fizyczny

p.1779-1788,fig.,ref.

Twórcy

autor
  • Department of Biology, Faculty of Science, Golestan University, PO Box 155, 49138-15739 Gorgan, Iran
  • Department of Agriculture, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
  • Department of Biology, Faculty of Science, Golestan University, PO Box 155, 49138-15739 Gorgan, Iran
  • Department of Biology, Faculty of Science, Golestan University, PO Box 155, 49138-15739 Gorgan, Iran

Bibliografia

  • Abdolzadeh A, Shima K, Lambers H, Chiba K (2008) Change in uptake, transport and accumulation of ions in Nerium oleander L. (Rosebay) as affected by different nitrogen source and salinity. Ann Bot 102:735–746. doi:10.1093/aob/mcn156
  • Al-aghabary K, Zhu Z, Shi Q (2005) Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. J Plant Nutr 27(12):2101–2115. doi:10.1081/PLN-200034641
  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15. doi:10.1104/pp.24.1.1
  • Ashraf M, Rahmatullah KS, Afzal M, Ahmed R, Mujeeb F, Sarwar A, Ali L (2010) Alleviation of detrimental effects of NaCl by silicon nutrition in salt-sensitive and salt-tolerant genotypes of sugarcane (Saccharum officinarum L.). Plant Soil 326:381–391. doi:10.1007/s11104-009-0019-9
  • Chance B, Maehly AC (1955) Assay of catalase and peroxidases. Methods Enzymol 2:764–775
  • Chen LM, Lin CC, Kao CH (2000) Copper toxicity in rice seedlings: changes in antioxidative enzyme activities, H₂O₂ level, and cell wall peroxidase activity in roots. Bot Bull Acad Sin 41:99–103
  • Diatloff E, Rangel Z (2001) Compilation of simple spectrophotometric techniques for the determination of elements in nutrient solutions. J Plant Nutr 24(1):75–86. doi:10.1081/PLN-100000313
  • Egrinya Eneji A, Inanaga S, Muranaka S, Li J, Hattori T, An P, Tsuji W (2008) Growth and nutrient use in four grasses under drought stress as mediated by silicon fertilizers. J Plant Nutr 31:355–365. doi:10.1080/01904160801894913
  • Elliot CL, Snyder GH (1991) Autoclave-induced digestion for the colorimetric determination of silicon in rice straw. J Agric Food Chem 39:1118–1119. doi:10.1021/jf00006a024
  • Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci USA 91:11–17 (Review)
  • FAO (2005) Global network on integrated soil management for sustainable use of salt-affected soils. FAO Land and Plant Nutrition Management Service, Rome. http://www.fao.org/ag/agl/agll/spush
  • Francois LE (1994) Growth, seed yield and oil content of canola growth under saline conditions. Agron J 86:233–237
  • Gao XP, Zou CQ, Wang LJ, Zhang FZ (2004) Silicon improves water use efficiency in maize plants. J Plant Nutr 27:1457–1470. doi: 10.1081/PLN-200025865
  • Gong HJ, Randall DP, Flowers TJ (2006) Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant Cell Environ 29:1970–1979. doi: 10.1111/j.1365-3040.2006.01572.x
  • Gunes A, Inal A, Bagci EG, Pilbeam DJ (2007) Silicon-mediated changes of some physiological and enzymatic parameters symptomatic for oxidative stress in spinach and tomato grown in sodic-B toxic soil. Plant Soil 290:103–114. doi:10.1007/s11104-006-9137-9
  • Gunes A, Kadioglu YK, Pilbeam DJ, Inal A, Coban S, Aksu A (2008) Influence of silicon on sunflower cultivars under drought stress, ii: essential and nonessential element uptake determined by polarized energy dispersive x-ray fluorescence. Commun Soil Sci Plant Anal 39:1904–1927. doi:10.1080/00103620802134719
  • Hashemi A, Abdolzadeh A, Sadeghipour HR (2010) Beneficial effects of silicon nutrition in alleviating salinity stress in hydroponically grown canola, Brassica napus L., plants. Soil Sci Plant Nutr 56:244–253. doi:10.1111/j.1747-0765.2009.00443.x
  • Hattori T, Sonobe K, Inanaga S, An P, Morita S (2008) Effects of silicon on photosynthesis of young cucumber seedlings under osmotic stress. J Plant Nutr 31:1046–1058. doi:10.1080/01904160801928380
  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 12:189–198. doi:10.1016/0003-9861(68) 90654-1
  • Hertwig B, Steb P, Feierabend J (1992) Light dependence of catalase synthesis and degradation in leaves and the influence of interfering stress conditions. Plant Physiol 100:1547–1553. doi: 0032-0889/92/100/1547/07/$01.00/0
  • Imlay J (2003) Pathways of oxidative damage. Annu Rev Microbiol 57:395–418. doi:10.1146/annurev.micro.57.030502.090938
  • Inal A, Pilbeam DJ, Gunes A (2009) Silicon increases tolerance to boron toxicity and reduces oxidative damage in barley. J Plant Nutr 32:112–128. doi:10.1080/01904160802533767
  • Irving GCJ, McLaughlin MJ (1990) A rapid and simple test for phosphorus in Olsen and Bray No. 1 extracts of soil. Commun Soil Sci Plant Anal 21:2245–2255. doi:10.1080/00103629009368377
  • Jana S, Choudhuri MA (1982) Glycolate metabolism of three submerged aquatic angiosperms during aging. Aquat Bot 12:345–354. doi:10.1016/0304-3770(82)90026-2
  • John MK, Chuah HH, Neufeld JH (1975) Application of improved azomethine-H method to the determination of boron in soils and plants. Anal Lett 8(8):559–568. doi:10.1080/00032717508058240
  • Kar M, Mishra D (1976) Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiol 57:315–319
  • Karimi E, Abdolzadeh A, Sadeghipour H (2009) Increasing salt tolerance in Olive, Olea europaea L. plants by supplemental potassium nutrition involves changes in ion accumulation and anatomical attributes. Int J Plant Prod 3(4):1735–8043
  • Liang YC, Shen QR, Shen ZG, Ma TS (1996) Effects of silicon on salinity tolerance of two barley cultivars. J Plant Nutr 19:173–183. doi:10.1080/01904169609365115
  • Liang YC, Chen Q, Liu Q, Zhang WH, Ding RX (2003) Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J Plant Physiol 160:1157–1164. doi:10.1078/0176-1617-01065
  • Liang Y, ZhangW ChencQ, Liu Y, Ding R (2006) Effect of exogenous silicon (Si) on H+-ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley (Hordeum vulgare L.). Environ Exp Bot 57:212–219. doi: 10.1016/j.envexpbot.2005.05.012
  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397. doi:10.1016/j.tplants.2006. 06.007
  • Mali M, Aery NC (2008) Influence of silicon on growth, relative water contents and uptake of silicon, calcium and potassium in wheat grown in nutrient solution. J Plant Nutr 31:1867–1876. doi:10.1080/01904160802402666
  • Mali M, Aery NC (2009) Effect of silicon on growth, biochemical constituents, and mineral nutrition of cowpea. Commun Soil Sci Plant Anal 40:1041–1052. doi:10.1080/00103620902753590
  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. doi:10.1016/S1360-1385(02)02312-9
  • Moussa HR (2006) Influence of exogenous application of silicon on physiological response of salt-stressed maize (Zea mays L.). Int J Agric Biol 8:293–297
  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22(5):867–880
  • Pandey V, Dixit V, Shyam R (2009) Chromium effect on ROS generation and detoxification in pea (Pisum sativum) leaf chloroplasts. Protoplasma 236:85–95. doi:10.1007/s00709-009-0061-8
  • Paridaa AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349. doi: 10.1016/j.ecoenv.2004.06.010
  • Romero-Aranda R, Soria T, Cuartero J (2001) Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant Sci 160:265–272. doi:10.1016/S0168-9452(00) 00388-5
  • Romero-Aranda MR, Jurado O, Cuartero J (2006) Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J Plant Physiol 163:847–855. doi:10.1016/j.jplph.2005.05.010
  • Sonobe K, Hattori T, An P, Tsuji W, Eneji E, Tanaka K, Inanaga S (2009) Diurnal variations in photosynthesis, stomatal conductance and leaf water relation in sorghum grown with or without silicon underwater stress. J Plant Nutr 32:433–442. doi:10.1080/01904160802660743
  • Soylemezoglu G, Demir K, Inal A, Gunes A (2009) Effect of silicon on antioxidant and stomatal response of two grapevine (Vitis vinifera L.) rootstocks grown in boron toxic, saline and boron toxic-saline soil. Sci Hortic 123:240–246. doi:10.1016/j.scienta.2009.09.005
  • Tester M, Davenport R (2003) Na⁺ tolerance and Na⁺ transport in higher plants. Ann Bot 91:503–527. doi:10.1093/aob/mcg058
  • Tuna AL, Kaya C, Higgs D, Murillo-Amador B, Girgin AR, Aydemir S (2008) Silicon improves salinity tolerance in wheat plants. Environ Exp Bot 62:10–16. doi:10.1016/j.envexpbot.2007. 06.006
  • Vaidyanathan H, Sivakumar P, Chakrabarty R, Thomas G (2003) Scavenging of reactive oxygen species in NaCl⁻stressed rice (Oryza sativa L.)—differential response in salt-tolerant and sensitive varieties. Plant Sci 165:1411–1418. doi:10.1016/j.plantsci. 2003.08.005
  • Vasudevan PT, Briggs M (2008) Biodiesel production: current state of the art and challenges. J Ind Microbiol Biotechnol 35:421–430. doi:10.1007/s10295-008-0312-2
  • Wang XS, Han JG (2007) Effects of NaCl and silicon on ion distribution in the roots, shoots and leaves of two alfalfa cultivars with different salt tolerance. Soil Sci Plant Nutr 53:278–285. doi: 10.1111/j.1747-0765.2007.00135.x
  • Yeo AR, Flowers SA, Rao G, Welfare K, Senanayake N, Flowers TJ (1999) Silicon reduces sodium up take in rice (oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environ 22:559–565. doi: 10.1046/j.1365-3040.1999.00418.x
  • Zhu ZJ, Wei GQ, Li J, Qian QQ, Yu JQ (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci 167:527–533. doi:10.1016/j.plantsci.2004.04.020

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-04fa3fad-d3f3-4bac-b6b3-15e859946b8a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.