PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 31 | 1 |
Tytuł artykułu

Changes in variable charge and acidity of rye (Secale cereale L.) roots surface under Zn-stress

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The plants of winter rye variety Rostockie grown in nutrient solution prepared according to Marschner and Romheld (1983) were stressed at shooting stage with different zinc (ZnCl2) concentrations of 0, 20, 200 and 400 mgXdm⁻³ during 10 days at pH = 4.5. The control plants were grown continuously at pH = 7, without Zn²⁺. The roots of all plants were titrated with 0.1 molXdm⁻³ NaOH in 1 molXdm⁻³ NaCl solution with a rate 0.01 ml/min using auto-titrator Titrino 702 (Metrohm). The amount of the base consumed between pH 3 and 10 was recorded with a step of 0.1 pH unit. From the titration data root surface charge was characterized. Roots grown at pH = 4.5 without Zn²⁺ addition, had apparently the same charge properties as the control roots. Under 200 and 400 mgXdm⁻³ of zinc addition, variable charge, Q, and the cation exchange capacity, CEC, of the roots significantly decreased as did the fractions of surface acidic functional groups of strong and medium acidity i.e. the groups having apparent surface dissociation constants, Kapp, between 10⁻³‧⁵ and 10⁻⁵‧⁵. For 20 mgXdm⁻³ zinc stress the fraction of weaker surface groups (surface dissociation constants around 10⁻⁶‧⁵) decreased also. The surface charge density, SCD, of roots decreased under the Zn stress.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
31
Numer
1
Opis fizyczny
p.59-64,fig.,ref.
Twórcy
  • Institute of Agrophysics, Polish Academy of Sciences, Doswiadczalna 4, 20290 Lublin, Poland
  • Institute of Agrophysics, Polish Academy of Sciences, Doswiadczalna 4, 20290 Lublin, Poland
  • Institute of Agrophysics, Polish Academy of Sciences, Doswiadczalna 4, 20290 Lublin, Poland
Bibliografia
  • Baranowska-Morek A (2003) Mechanisms of plant tolerance to heavy metals. Kosmos (Stockh) 52(2–3):283–298 (in Polish)
  • De Wit JCM, Van Riemsdijk WH, Nederlof MM, Kinniburgh DG, Koopal LK (1990) Analysis of ion binding on humic substances and the determination of intrinsic affinity distributions. Anal Chim Acta 232:189–207. doi:10.1016/S0003-2670(00)81235-0
  • Ganev S, Arsova A (1989) Method for determining of the strongly acid and weakly acid ion exchangers of plant tissues. Bulg Plant Physiol XV:72–79
  • Heintze SG (1964) Studies on cation exchange capacities of roots. Plant Soil 4:365–383
  • Heumann HG (2002) Ultrastructural localization of zinc in zinctolerant Armeria maritima ssp. Hallteri by autometallography. J Plant Physiol 159:191–203. doi:10.1078/0176-1617-00553
  • Józefaciuk G, Shin JS (1996a) A modified back-titration method to measure soil titration curves minimizing soil acidity and dilution effects. Korean J Soil Sci Fert 29:321–327
  • Józefaciuk G, Shin JS (1996b) Distribution of apparent surface dissociation constants of some Korean soils as determined from back titration curves. Korean J Soil Sci Fert 29:328–335
  • Józefaciuk G, Szatanik-Kloc A (2004) Decrease in variable charge and acidity of root surface under Al treatment are correlated with Al tolerance of cereal plants. Plant Soil 260:137–145. doi: 10.1023/B:PLSO.0000030175.23904.5a
  • Kabata-Pendias A, Pendias H (1999) Biogeochemistry of trace elements. (Biogeochemia pierwiastków śladowych). PWN, Warsaw ISBN 83-01-12823-2 (in Polish)
  • KnightAH, CrookeWH, Nikson RH (1961) Cation Exchange capacities of tissues of higher and lower plants and their relation to uronic acid contents. Nature 192:142–144. doi:10.1038/192142a0
  • Kolditza L (1994). Inorganic chemistry PWN Warsaw (in Polish)
  • Marschner H, Romheld V (1983) In vivo measurement of roots induced pH changes at the soil–root interface; effect of plant species and nitrogen source. Z Pflanzenphysiol 111:249–254
  • MeychlikNR,YermakovLP(2001) Ion exchange properties of plant root cell walls. Plant Soil 234:181–193. doi:10.1023/A:1017936318435
  • Morvan C, Demarty M, Thellier M (1979) Titration of isolated cell walls of Lemna minor L. Plant Physiol 63:1117–1122
  • Nederlof MM, De Wit JC, Riemsdijk WH, Koopal LK (1993) Determination of proton affinity distributions for humic substances. Environ Sci Technol 27:846–856. doi:10.1021/es00042a006
  • Siedlecka A, Tukiendorf A, Skórzyńska-Polit E, Maksymiec W, Wójcik M, Baszyński T et al (2001) Angiosperms. In: Prasad MNV (ed) Metals in the environment analysis by biodiversity. Marcel Dekker, New York, pp 171–217
  • Soldatov WS (1996) Razcziot kriwych potencjometriczeskogo titrowania jonitow. Zhurnal Fiziczieskoj Chimii 70:154–158 (in Russian)
  • Szatanik-Kloc A, Józefaciuk G, Masłowski J, Muranyi A, Farkas C (2001) Changes in the surface properties of the young sieve roots after 24 h aluminum stress. Int Agrophysics 15:201–207
  • Szatanik-Kloc A, Bowanko G (2007) Effect of pH and zinc on surface area of rye (Secale cereale L.) roots as determined from nitrogen adsorption–desorption data. Acta Agrophysica (in press) (in Polish)
  • Williams DE, Coleman NT (1950) Cation exchange properties of plant root surfaces. Plant Soil II:243–256. doi:10.1007/BF01852352
  • Wójcik M, Skórzyńska-Polit E, Tukiendorf A (2006) Organic acid accumulation and antioxidant enzyme activities in Thlaspi carelessness under Zn and Cd stress. Plant Growth Regul 48:145–155. doi:10.1007/s10725-005-5816-4
  • Wierzbicka M (1995) Effect of heavy metals on plants (Oddziaływanie metali ciężkich na rośliny).Kosmos (Stockh) 44:639–651 (in Polish)
Uwagi
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-044c9844-5a94-4041-88c6-91d5ed2714e0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.