We study the mechanisms of neurogenesis in order to implement them for neuronal repair. I will present unpublished work about the molecular function of Trnp1, a novel nuclear protein, with key roles in promoting neural stem cell self‑renewal and neurogenesis. Trnp1 shows unprecedented functions in regulating several nuclear processes by its N-terminal intrinsically disordered region, which is highly conserved in mammals. I will then show that Trnp1 is also critical for direct neuronal reprogramming and provide an update on the recent breakthrough in direct glia-to-neuron conversion after brain injury. I will then move on to discuss the integration of replaced neurons into the circuitry of the murine cerebral cortex – that normally does not integrate new neurons at adult stages – and present unpublished data about the mechanisms regulating this integration. Taken together, our knowledge about basic mechanisms of neurogenesis allows us to make great strides towards neuronal repair.