Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 1 |

Tytuł artykułu

Feasibility of sewage sludge leached by Aspergillus niger in land utilization


Warianty tytułu

Języki publikacji



Aspergillus niger is adopted in bioleaching to dispose of sludge from an urban wastewater treatment plant to determine the bioleaching influence of sludge on heavy metal fraction and nutritive material loss. The enrichment effect on wheat seedlings of Cu, Zn, Pb, and Cd in sludge is researched by a soil-cultivated experiment. Results indicate that the removal rates of Cu, Zn, Pb, and Cd are 74.1%, 87.6%, 82.1%, and 97.8% in the sludge after bioleaching, respectively. The remaining heavy metal in the sludge is mainly residual fraction followed by oxidizable fraction. The bioefficiency of the heavy metal decreases significantly. The loss rates of N, P, and K in the sludge are 29.8%, 13.3%, and 28.8%, respectively, with good fertility after bioleaching. The enrichment capacity order of heavy metals is Zn>Pb>Cu>Cd in wheat root and stem leaf, which is consistent with the order of unstable fraction content in the sludge after bioleaching.

Słowa kluczowe








Opis fizyczny



  • Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China
  • College of Environment, Hohai University, Nanjing, China
  • College of Environment, Hohai University, Nanjing, China


  • 1. REN W.X., LI P.J., GENG Y., LI X.J. Biological leaching of heavy metals from a contaminated soil by Aspergillus niger. J. Hazard. Mater. 167 (1-3), 164, 2009.
  • 2. PATHAK A., DASTIDAR M.G., SREEKRISHNAN T.R. Bioleaching of heavy metals from sewage sludge: Areview. J. Environ. Manage. 90 (8), 2343, 2009.
  • 3. BAYAT B., SARI B. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge. J. Hazard. Mater. 174 (1-3), 763, 2010.
  • 4. QU Y., LIAN B., MO B.B, LIU C.Q. Bioleaching of heavy metals from red mud using Aspergillus niger. Hydrometal-lurgy, 136, 71, 2013.
  • 5. GU X.Y.,WONG J.W. Identification of inhibitory substances affecting bioleaching of heavy metals from anaerobically digested sewage sludge. Environ. Sci. Technol. 38 (10), 2934, 2004.
  • 6. XU T.J., TING Y.P. Fungal bioleaching of incineration fly ash: Metal extraction and modeling growth kinetics. Enzyme and Microbial Technol. 44, 323, 2009.
  • 7. WANG Q.H., YANG J., WANG Q., WU T.J. Effects of water-washing pretreatment on bioleaching of heavy metals from municipal solid waste incinerator fly ash. J. Hazard. Mater. 162 (2-3), 812, 2009.
  • 8. AMIRI F., YAGHMAEI S., MOUSAVI S.M., Sheibani S. Recovery of metals from spent refinery hydrocracking catalyst using adapted Aspergillus niger. Hydrometallurgy, 109 (1-2), 65, 2011.
  • 9. AMIRI F., MOUSAVIC S.M., YAGHMAEI S., BARATI M. Bioleaching kinetics of a spent refinery catalyst using Aspergillus niger at optimal conditions. Biochem. Eng. J., 67, 208, 2012.
  • 10. MOHAPATRA S., PRADHAN N., MOHANTY S., SUKLA L.B. Recovery of nickel from lateritic nickel ore using Aspergillus niger and optimization of parameters. Miner. Eng. 22 (3), 311, 2009.
  • 11. RENOUX A.Y., TYAGI R.D., SAMSON R. Assessment of toxicity reduction after metal removal in bioleached sewage sludge.Water Res. 35 (6), 1415, 2001.
  • 12. MORITA H., TSUBOL H. Basic investigation on the chemical forms of heavy metals in a sewage treatment plant. Water Sci.Technol. 42 (9), 159, 2000.
  • 13. WANG C., LI X.C., MA H.T., QIAN J., ZHAI J.B. Distribution of extractable fractions of heavy metals in sludge during the wastewater treatment process. J. Hazard. Mater. 137 (3), 1277, 2006.
  • 14. JING Q.R.Organic acid production technology, Light Industry Press, Beijing, China. 19, 1989.
  • 15. TSEKOVA K., TODOROVA D., GANEVA S. Removal of heavy metals from industrial wastewater by free and immobilized cells of Aspergillus niger. Int. Biodeterior. Biode-grad. 64 (6), 447, 2010.
  • 16. HE M.M., YU Y.T., HUA Y.M., ZHOU G.D., XU J., TIAN G.M. Removal of heavy metals in sewage sludge and losses of nutrition during bioleaching. J. Agro-Environ. Sci. 25 (5), 1359, 2006.
  • 17. HUA Y.M., CHEN Y.X., WU W.X., TIAN G.M. Feasibility of bioleached sewage sludge in land application. Chinese J. Ecology. 26 (8), 1204, 2007.
  • 18. WONG J.W.C., XIANG L., CHAN L.C. pH requirement for the bioleaching of heavy metals from anaerobically digested wastewater sludge. Water, Air, Soil Pollut. 1389 (1-4), 25, 2002.
  • 19. RAJAE A., GHITA A.B., SALAH S., PETER W., JUAN C., MOHAMED H. Aerobic biodegradation of sludge from the effluent of a vegetable oil processing plant mixed with household waste: Physical-chemical, microbiological, and spectroscopic analysis. Bioresour. Technol. 99 (18), 8571, 2008.
  • 20. ABOUELWAFA R., AMIR S., SOUABI S., WINTERTON P., NDIRA V., REVEL J.C., HAFIDI M. The fulvic acid fraction as it changes in the mature phase of vegetable oil-mill sludge and domestic waste composting. Bioresour. Technol. 99 (14), 6112, 2008.
  • 21. WENG S.F. Analysis of fourier Transform infrared spec-troscopy, Second Edition, Chemical Industry Press, Beijing, China. 291, 2010.
  • 22. SOUMIA A., ABDELMAJID J., ABDELILAH M., MOHAMED E. G., PETER W., MOHAMED H. Structural study of humic acids during composting of activated sludge-green waste: Elemental analysis, FTIR and 13C NMR. J. Hazard. Mater. 177 (1-3), 524, 2010.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.