Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 75 | 3 |

Tytuł artykułu

Effect of extending grating length and width on human visually evoked potentials

Warianty tytułu

Języki publikacji



Visually evoked potentials (VEPs) were elicited by Gabor gratings with different lengths and widths at three spatial frequencies (SFs): low, 1.45 c/deg, medium, 2.9 c/deg and high, 5.8 c/deg and at a contrast 3 times above the detection threshold at each SF. An increase of grating length enhanced N1 amplitude at occipital and parietal positions stronger than the increase of grating width at aspect ratios (length : width) above 4:1. The stronger effect of stimulus length than width was reflected also in the amplitude of the later P1 component at central and parietal positions. The larger effect of stimulus length than width on the VEP amplitude was SF specific: it was stronger at 5.8 c/deg, smaller at 2.9 c/deg and vanished at 1.45 c/deg. The results obtained suggest anisotropy in the physiological mechanisms that underlie grating perception and involve bottom-up processes initiated in the occipital cortex.

Słowa kluczowe








Opis fizyczny



  • Department of Sensory Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
  • Department of Sensory Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
  • Department of Sensory Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
  • Department of Sensory Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
  • Department of Sensory Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria


  • Cheng K, Hasegawa T, Saleem KS, Tanaka K (1994) Comparison of neuronal selectivity for stimulus speed, length, and contrast in the prestriate visual cortical areas V4 and MT of the macaque monkey. J Neurophysiol 71: 2269-2280.
  • Desimone R, Schein SJ (1987) Visual properties of neurons in area V4 of the macaque: sensitivity to stimulus form. J Neurophysiol 57: 835-868.
  • Desimone R, Schein SJ, Moran J, Ungerleider LG (1985) Contour, color and shape analysis beyond the striate cor¬tex. Vision Res 25: 441-452.
  • Di Russo F, Martinez A, Sereno MI, Pitzalis S, Hillyard SA (2002) Cortical sources of the early components of the visual evoked potential. Hum Brain Mapp 15: 95-111.
  • Foley JM, Varadharajan S, Koh CC, Farias MC (2007) Detection of Gabor patterns of different sizes, shapes, phases and eccentricities. Vision Res 47: 85-107.
  • Hinkle DA, Connor CE (2001) Disparity tuning in macaque area V4. Neuroreport 12: 365-369.
  • Jemel B, Mimeault D, Saint-Amour D, Hosein A, Mottron L (2010) VEP contrast sensitivity responses reveal reduced functional segregation of mid and high filters of visual channels in Autism. J Vis 10(6): 1-13.
  • Jones R, Keck MJ (1978) Visual evoked response as a func¬tion of grating spatial frequency. Invest Ophthalmol Vis Sci 17: 652-659.
  • Korth M, Nguyen NX (1997) The effect of stimulus size on human cortical potentials evoked by chromatic patterns. Vision Res 37: 649-57.
  • Lindeberg T (2013) A computational theory of visual recep¬tive fields. Biol Cybern 107: 589-635.
  • Manahilov V, Simpson WA, McCulloch DL (2001) Spatial summation of peripheral Gabor patches. J Opt Soc Am A Opt Image Sci Vis 18: 273-282.
  • Martinez LM, Alonso JM (2003) Complex receptive fields in primary visual cortex. Neuroscientist 9: 317-331.
  • Meese TS, Hess RF (2007) Anisotropy for spatial summa¬tion of elongated patches of grating: A tale of two tails. Vision Res 47: 1880-1892.
  • Mihailova M, Stomonyakov V, Vassilev A (1999) Peripheral and central delay in processing high spatial frequencies: reaction time and VEP latency studies. Vision Res 39: 699-705.
  • Mitov D, Totev T (2007) Effects of stimulus width and length on the detection threshold. In: Proc. IX National Congress of Bulgarian Society of Physiological Sciences, 9-11 November 2007. Blagoevgrad, Bulgaria. p. 39.
  • Musselwhite MJ, Jeffreys DA (1985) The influence of spa¬tial frequency on the reaction times and evoked potentials recorded to grating pattern stimuli. Vision Res 25: 1545¬1555.
  • Parker DM, Salzen EA, Lishman JR (1982) The early wave of the visual evoked potential to sinusoidal gratings: Responses to quadrant stimulation as a function of spatial frequency. Electroencephalogr Clin Neurophysiol 53: 427-435.
  • Plant GT, Zimmern RL, Durden K (1983) Transient visually evoked potentials to the pattern reversal and onset of sinusoidal gratings. Electroencephalogr Clin Neurophysiol 56: 147-158.
  • Polat U, Norcia AM (1998) Elongated physiological sum¬mation pools in the human visual cortex. Vision Res 38: 3735-3741.
  • Polat U, Tyler CW (1999) What pattern the eye sees best. Vision Res 39: 887-895.
  • Serre T (2014) Hierarchical models of the visual system. In: Encyclopedia of computational neuroscience (Jaeger D, Jung R, Eds). Springer, New York, USA. p. 1-12.
  • Thomas JP (1978) Spatial summation in the fovea: asym¬metrical effects of longer and shorter dimensions. Vision Res 18: 1023-1029.
  • Vassilev A, Mihaylova M, Bonnet C (2002) On the delay in processing high spatial frequency visual information: reaction time and VEP latency study of the effect of local intensity of stimulation. Vision Res 42: 851-864.
  • Vassilev A, Penchev A (1976) Spatial and temporal summa¬tion in the perception of lines. Vision Res 16: 1329¬1335.
  • Vassilev A, Stomonyakov V, Manahilov V (1994) Spatial- frequency specific contrast gain and flicker masking of human transient VEP. Vision Res 34: 863-872.
  • Vassilev A, Strashimirov D (1979) On the latency of human visually evoked response to sinusoidal gratings. Vision Res 19: 843-845.
  • Watanabe M, Tanaka H, Uka T, Fujita I (2002) Disparity- selective neurons in area V4 of macaque monkeys. J Neurophysiol 87: 1960-1973.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.