PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 11 |
Tytuł artykułu

Soil microbes and the availability of soil nutrients

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is likely to provide plants with their necessary nutrients using chemical and biological fertilization. Although chemical fertilization is a quick method, it is not recommendable economically and environmentally, especially if overused. Biological fertilization is the use of soil microbes including arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria to inoculate plants. It has been proved that biological fertilization is an efficient method to supply plants with their necessary nutrients. It is economically and environmentally recommendable, because it results in sustainability. In this article, some of the most important details including the mechanisms and processes regarding the effects of soil microbes on the availability and hence uptake of nutrients by plant are reviewed. Such details can be important for the selection and hence production of microbial inoculums, which are appropriate for biological fertilization.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
35
Numer
11
Opis fizyczny
p.3075-3084,fig.,ref.
Twórcy
autor
  • Mehrabad Rudehen, Imam Ali Blvd., Mahtab Alley #55, 3978147395 Tehran, Iran
  • AbtinBerkeh Limited Co., Imam Blvd., Shariati Blvd. #107, 3973173831 Rudehen, Tehran, Iran
Bibliografia
  • Abbas-Zadeh P, Saleh-Rastin N, Asadi-Rahmani H, Khavazi K, Soltani A, Shoary-Nejati A, Miransari M (2010) Plant growthpromoting activities of fluorescent pseudomonads, isolated from the Iranian soils. Acta Physiol Plant 32:281–288
  • Adesemoye A, Kloepper J (2009) Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12
  • Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10
  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681
  • Beller HR, Chain PSG, Letain TE, Chakicherla A, Larimer FW, Richardson PM, Coleman MA, Wood AP, Kelly DP (2006) The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans. J Bacteriol 188:1473–1488
  • Bi YL, Li XL, Christie P (2003) Influence of early stages of arbuscular mycorrhiza on uptake of zinc and phosphorus by red clover from a low phosphorus soil amended with zinc and phosphorus. Chemosphere 50:831–837
  • Blaise D, Singh JV, Bonde AN, Tekale KU, Mayee CD (2005) Effects of farmyard manure and fertilizers on yield, fibre quality and nutrient balance of rainfed cotton (Gossypium hirsutum). Bioresour Technol 96:345–349
  • Borch K, Bouma T, Lynch J, Brown K (1999) Ethylene: a regulator of root architectural responses to soil phosphorus availability. Plant Cell Environ 22:425–431
  • Bowler C, Van Montagu M, Inze´ D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43: 83–116
  • Chen L, Dick W, Streeter J, Hoitink H (1998) Fe chelates from compost microorganisms improve Fe nutrition of soybean and oat. Plant Soil 200:139–147
  • Chen B, Li XL, Tao HQ, Christie P, Wong MH (2003) The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. Chemosphere 50:839–846
  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678
  • Divya B, Kumar M (2011) Plant–microbe interaction with enhanced bioremediation. Res J Biotechnol 6:72–79
  • Dutta S, Podile A (2010) Plant growth promoting rhizobacteria (PGPR): the bugs to debug the root zone. Crit Rev Microbiol 36:232–244
  • Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Ecol 36:184–189
  • Fang C, Smith P, Smith JU, Moncrieff JB (2005) Incorporating microorganisms as decomposers into models to simulate soil organic matter decomposition. Geoderma 129:139–146
  • Ferguson BJ, Indrasumunar A, Hayashi S, Lin M-H, Lin Y-H, Reid DE, Gresshoff PM (2010) Molecular analysis of legume nodule development and autoregulation. J Integr Plant Biol 52:61–76
  • Fitter AH, Helgason T, Hodge A (2011) Nutritional exchanges in the arbuscular mycorrhizal symbiosis: implications for sustainable agriculture. Fungal Biol Rev 25:1–5
  • Ghiorse WC (1988) The biology of manganese transforming microorganisms in soils. In: Graham RD, Hannam RJ, Uren NC (eds) Manganese in soils and plants. Kluwer Academic Publishers, Dordrecht, pp 75–85
  • Gonzalez-Guerrero M, Azcon-Aguilar C, Mooney M, Valderas A, MacDiarmid CW, Eide DJ, Ferrol N (2005) Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Genet Biol 42:130–140
  • Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257
  • He C, Tan GE, Liang X, Du W, Chen TL, Zhi GY, Zhu Y (2010) Effect of Zn-tolerant bacterial strains on growth and Zn accumulation in Orychophragmus violaceus. Appl Soil Ecol 44:1–5
  • Hernandez M, Kappler A, Newman D (2004) Phenazines and other redox-active antibiotics promote microbial mineral reduction. Appl Environ Microbiol 70:921–928
  • Hildebrandt U, Ouziad F, Marner FJ, Bothe H (2006) The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores. FEMS Microbiol Lett 254:258–267
  • Hildebrandt, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146
  • Hinsinger P, Gobran G, Gregory P, Wenzel W (2005) Rhizosphere geometry and heterogeneity arising from root mediated physical and chemical processes. New Phytol 168:293–303
  • Hirel B, Tétu T, Lea P, Dubois F (2011) Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 3:1452–1485
  • Hodge A (2010) Roots: the acquisition of water and nutrients from the heterogeneous soil environment. In: Lüttge U, Beyschlag W, Büdel B, Francis D (eds) Progress in botany 71. Springer, Berlin, pp 307–337
  • Houser J, Richardson W (2010) Nitrogen and phosphorus in the Upper Mississippi River: transport, processing, and effects on the river ecosystem. Hydrobiologia 640:71–88
  • Hu X, Chen J, Guo J (2006) Two phosphate- and potassiumsolubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World J Microbiol Biotechnol 22:983–990
  • Iimura Y, Ikeda S, Sonoki T et al (2002) Expression of a gene for Mnperoxidase from Coriolus versicolor in transgenic tobacco generates potential tools for phytoremediation. Appl Microbiol Biotechnol 59:246–251
  • Iqbal U, Jamil N, Ali I, Hasnain S (2010) Effect of zinc-phosphatesolubilizing bacterial isolates on growth of vigna radiate. Ann Microbiol 60:243–248
  • Jalili F, Khavazi K, Pazira E, Nejati A, Rahmani HA, Sadaghiani HR, Miransari M (2009) Isolation and characterization of ACC deaminase-producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. J Plant Physiol 166:667–674
  • Jin CW, Li GX, Yu XH, Zheng SJ (2010) Plant Fe status affects the composition of siderophore-secreting microbes in the rhizosphere. Ann Bot 105:835–841
  • Johal GS, Huber DM (2009) Glyphosate effects on diseases of plants. Eur J Agron 31:144–152
  • Johnson NC (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol 185:631–647
  • Johnson NC, Wilson GWT, Bowker MA, Wilson JA, Miller RM (2010) Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proc Natl Acad Sci 107:2093–2098
  • Jones D, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480
  • Knauff U, Schulz M, Scherer H (2003) Arylsufatase activity in the rhizosphere and roots of different crop species. Eur J Agron 19:215–223
  • Lamont BB (2003) Structure, ecology and physiology of root clusters—a review. Plant Soil 248:1–19
  • Li X, Wu Z, Li W, Yan R, Li L, Li J, Li Y, Li M (2007) Growth promoting effect of a transgenic Bacillus mucilaginosus on tobacco planting. Appl Microbiol Biotechnol 74:1120–1125
  • Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol J 29:413–421
  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556
  • Makoi JH, Ndakidemi PA (2007) Biological, ecological and agronomic significance of plant phenolic compounds in rhizosphere of the symbiotic legumes. Afr J Biotechnol 6:1358–1368
  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London
  • Marschner P, Rengel Z (2007) Contributions of rhizosphere interactions to soil. In: Abbott LK, Murphy DV (eds) Soil biological fertility—a key to sustainable land use in agriculture. Kluwer Academic Publishers, Dordrecht, pp 81–98
  • Marschner H, Ro¨mheld V (1994) Strategies of plants for acquisition of iron. Plant Soil 165:261–274
  • Marschner P, Crowley D, Rengel Z (2011) Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis—model and research methods. Soil Biol Biochem 43:883–894
  • Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider J, Piceno Y, DeSantis T, Andersen G, Bakker P, Raaijmakers J (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100
  • Meyer B, Imhoff J, Kuever J (2007) Molecular analysis of the distribution and phylogeny of the soxB gene among sulfuroxidizing bacteria—evolution of the Sox sulfur oxidation enzyme system. Environ Microbiol 9:2957–2977
  • Miransari M (2010) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol 12:563–569
  • Miransari M (2011a) Arbuscular mycorrhizal fungi and nitrogen uptake. Arch Microbiol 193:77–81
  • Miransari M (2011b) Interactions between arbuscular mycorrhizal fungi and soil bacteria. Appl Microbiol Biotechnol 89:917–930
  • Miransari M (2011c) Soil microbes and plant fertilization. Review article. Appl Microbiol Biotechnol 92:875–885
  • Miransari M (2011d) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29:645–653
  • Miransari M, Mackenzie AF (2011a) Development of a soil N test for fertilizer requirements for corn production in Quebec. Commun Soil Sci Plant Anal 42:50–65
  • Miransari M, Mackenzie AF (2011b) Development of a soil N test for fertilizer requirements for wheat. J Plant Nutr 34:762–777
  • Miransari M, Smith DL (2007) Overcoming the stressful effects of salinity and acidity on soybean nodulation and yields using signal molecule genistein under field conditions. J Plant Nutr 30:1967–1992
  • Miransari M, Smith D (2008) Using signal molecule genistein to alleviate the stress of suboptimal root zone temperature on soybean-Bradyrhizobium symbiosis under different soil textures. J Plant Interact 3:287–295
  • Miransari M, Smith DL (2009) Alleviating salt stress on soybean (Glycine max (L.) Merr.)—Bradyrhizobium japonicum symbiosis, using signal molecule genistein. Eur J Soil Biol 45:146–152
  • Miransari M, Balakrishnan P, Smith DL, Mackenzie AF, Bahrami HA, Malakouti MJ, Rejali F (2006) Overcoming the stressful effect of low pH on soybean root hair curling using lipochitooligosaccahrides. Commun Soil Sci Plant Anal 37:1103–1110
  • Miransari M, Rejali F, Bahrami HA, Malakouti MJ (2009a) Effects of soil compaction and arbuscular mycorrhiza on corn (Zea mays L.) nutrient uptake. Soil Tillage Res 103:282–290
  • Miransari M, Rejali F, Bahrami HA, Malakouti MJ (2009b) Effects of arbuscular mycorrhiza, soil sterilization, and soil compaction on wheat (Triticum aestivum L.) nutrients uptake. Soil Tillage Res 104:48–55
  • Niu S, Wu M, Han YI, Xia J, Zhang Z, Yang H, Wan S (2010) Nitrogen effects on net ecosystem carbon exchange in a temperate steppe. Glob Change Biol 16:144–155
  • Oller ALW, Agostini E, Talano MA, Capozucca C, Milrad SR, Tigier HA, Medina MI (2005) Over expression of a basic peroxidase in transgenic tomato (Lycopersicon esculentum Mill. cv. Pera) hairy roots increases phytoremediation of phenol. Plant Sci 169:1102–1111
  • Podile A, Kishore G (2006) Plant growth-promoting rhizobacteria. In: Gnanamanickam S (ed) Plant-associated bacteria. Springer, Dordrecht, pp 195–230
  • Pongrac P, Vogel-Mikuš K, Kump P, Necemer M, Tolrá R, Poschenrieder C, Barceló J, Regvar M (2007) Changes in elemental uptake and arbuscular mycorrhizal colonization during the life cycle of Thlaspi praecox Wulfen. Chemosphere 69:1602–1609
  • Rengel Z (1997) Root exudation and microflora populations in rhizosphere of crop genotypes differing in tolerance to micronutrient deficiency. Plant Soil 196:255–260
  • Rengel Z (1999) Physiological mechanisms underlying differential nutrient efficiency of crop genotypes. In: Rengel Z (ed) Mineral nutrition of crops: mechanisms and implications. The Haworth Press, New York, pp 227–265
  • Rengel Z, Gutteridge R, Hirsch P, Hornby D (1996) Plant genotype, micronutrient fertilisation and take-all infection influence bacterial populations in the rhizosphere of wheat. Plant Soil 183:269–277
  • Richardson A, Barea J-M, McNeill A, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321: 305–339
  • Romheld V, Marschner H (1986) Mobilization of iron in the rhizosphere of different plant species. Adv Plant Nutr 2:155–204
  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 2011:LSMR-21
  • Sajedi N, Ardakani M, Rejali F, Mohabbati F, Miransari M (2010) Yield and yield components of hybrid corn (Zea mays L.) as affected by mycorrhizal symbiosis and zinc sulfate under drought stress. Physiol Mol Biol Plants 16:343–351
  • Salimpour S, Khavazi K, Nadian H, Besharati H, Miransari M (2010) Enhancing phosphorous availability to canola (Brassica napus L.) using P solubilizing and sulfur oxidizing bacteria. Aust J Crop Sci 4:330–334
  • Saxena AK, Tilak KVBR (1998) Free-living nitrogen fixers: its role in crop production. In: Verma AK (ed) Microbes for health, wealth and sustainable environment. Malhotra Publ Co, New Delhi, pp 25–64
  • Shane M, Lambers H (2005) Manganese accumulation in leaves of Hakea prostrata (Proteaceae) and the significance of cluster roots for micronutrient uptake as dependent on phosphorus supply. Physiol Plant 124:441–450
  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, London Sonoki T, Kajita S, Ikeda S, Uesugi M, Tatsumi K, Katayama Y, Iimura Y (2005) Transgenic tobacco expressing fungal laccase promotes the detoxification of environmental pollutants. Appl Microbiol Biotechnol 67:138–142
  • Timonin MI (1946) Microflora of the rhizosphere in relation to the manganese-deficiency disease of oats. Soil Sci Soc Am Proc 11:284–292
  • Uroz S, Calvaruso C, Turpault M-P, Frey-klett P (2009) Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol 17:378–387
  • Van de Velde W, Zehirov G, Szatmari A, Debreczeny M, Ishihara H, Kevei Z, Farkas A, Mikulass K, Nagy A, Tiricz H, Satiat-Jeunemaitre B, Alunni B, Bourge M, Kucho K-I, Abe M, Kereszt A, Maroti G, Uchiumi T, Kondorosi E, Mergaert P (2010) Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 327:1122–1126
  • Van der Heijden MG (2010) Mycorrhizal fungi reduce nutrient loss from model grassland ecosystems. Ecology 91:1163–1171
  • van Loon L (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254
  • Wang X, Pan Q, Chen F, Yan X, Liao H (2010) Effects of coinoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza 21:173–181
  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125: 155–166
  • Yang C, Crowley D (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66:345–351
  • Zabihi H, Savaghebi G, Khavazi K, Ganjali A, Miransari M (2011) Pseudomonas bacteria and phosphorous fertilization, affecting wheat (Triticum aestivum L.) yield and P uptake under greenhouse and field conditions. Acta Physiol Plant 33:145–152
  • Zeng X, Liu X, Tang J, Hu S, Jiang P, Li W, Xu L (2012) Characterization and potassium-solubilizing ability of Bacillus Circulans Z1-3. Adv Sci Lett 10:173–176
  • Zhang H, Sun Y, Xie X, Kim M, Dowd S, Pare P (2009) A soil bacterium regulates plant acquisition of iron via deficiencyinducible mechanisms. Plant J 58:568–577
  • Zhao J-L, Zhou L-G, Wu J-Y (2010) Promotion of Salvia miltiorrhiza hairy root growth and tanshinone production by polysaccharideprotein fractions of plant growth-promoting rhizobacterium Bacillus cereus. Process Biochem 45:1517–1522
  • Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33:406–413
Uwagi
rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-038ceefe-4f9e-449c-9eee-21c6afee2569
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.