Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 23 | 5 |

Tytuł artykułu

Electrocoagulation of palm oil mill effluent for treatment and hydrogen production using response surface methodology

Warianty tytułu

Języki publikacji



Palm oil mill effluent from the palm oil processing industry has been documented as a cause of severe damages to aquatic systems and a significant increase in greenhouse gases. This study was designed to use electrocoagulation for the pre-treatment of palm oil mill effluent to simultaneously reduce the pollutants and produce hydrogen gas. In this research, response surface methodology was applied to evaluate the effects of the main process parameters (voltage supply, retention time, and the addition of sodium chloride) in removing chemical oxygen demand, turbidity and metals from palm oil mill effluent. Response surface methodology was also applied to optimize the production of hydrogen gas from palm oil mill effluent during the electrocoagulation process. The obtained quadratic regression model has a high variance coefficient (R2) value, which is greater than 85%. The optimal conditions to achieve highly efficient wastewater treatment and maximum hydrogen gas production were determined to be 4 volts, 6 hours retention time, and no added NaCl. At optimal conditions, electrocoagulation was able to remove 42.94% chemical oxygen demand (COD), 83.16% turbidity, 23.62% Fe, 27.56% Mg, and 47.83% Ca. Additionally, the production of hydrogen gas (28.87%) was also achieved, which enhances the cost effectiveness of the process.

Słowa kluczowe








Opis fizyczny



  • Indonesian Oil Palm Research Iinstitute Jalan Brigjend Katamso 51, Kp. Baru, P.O. Box 1103, 20158 Medan, Indonesia
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, University Kebangsaan Malaysia, Selangor Darul Ehsan 43600 Bangi, Malaysia
  • Centre for Advance Studies in Energy (CAS-EN), National University of Sciences and Technology, Sector H-12, Islamabad Pakistan
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, University Kebangsaan Malaysia, Selangor Darul Ehsan 43600 Bangi, Malaysia
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, University Kebangsaan Malaysia, Selangor Darul Ehsan 43600 Bangi, Malaysia


  • 1. STICHNOTHE H., SCHUCHARDT F. Comparison of dif­ferent treatment options for palm oil production waste on a life cycle basis. Int. J. Life Cycle Assess. DOI: 10.1007/s11367-010-0223-0. 15, 907, 2010.
  • 2. SRIDHAR M.K.C., ADEOLUWA O.O. Palm Oil Industry Residues, in: P. S. n. Nigam and A. Pandey (Eds.), Biotechnology for Agro-Industrial Residues Utilisation, Springer Science+Business Media B.V. pp. 342-354, 2009.
  • 3. AHMAD A.L., CHONG M.F., BHATIA S. A comparative study on the membrane based palm oil mill effluent (POME) treatment plant. J. Hazard. Mater. 171, 166, 2009.
  • 4. WU T.Y., MOHAMMAD A.W., JAHIM J.M., ANUAR N. Pollution control technologies for the treatment of palm oil mill effluent (POME) through end-of-pipe processes. J. Environ. Manage. 91, 1467, 2010.
  • 5. PAMIN K., SIAHAAN M.M., TOBING P.L. Utilization of Waste Liquid VFD on Oil Palm in Indonesia, National Workshop on Utilization of Waste Water and Land Application, Jakarta. 1996.
  • 6. WULFERT K., GINDULIS W., KOHLER M., DARNOKO D., TOBING P.L., YULIASARI R. Processing Wastes Melt manufacture Palm anaerobic Specifically, Presiding meeting Technically Palm Oil, Palm Oil Research Center. 2000.
  • 7. HOLT P., BARTON G., MITCHELL C. Electrocoagulation as Wastewater Treatment, The Third Annual Australian Environmental Engineering Research Event, Castlemaine, Victoria 1999.
  • 8. EMAMJOMEH M.M., SIVAKUMAR M. Review of pollu­tants removed by electrocoagulation and electrocoagula- tion/flotation processes. J. Environ. Manage. 90, 1663, 2009.
  • 9. ZONGO I., LECLERC J.-P., MAIGA H.A., WETHE J., LAPICQUEA F. Removal of hexavalent chromium from industrial wastewater by electrocoagulation: A comprehen­sive comparison of aluminium and iron electrodes. Sep. Purif. Technol. 66, 159, 2009.
  • 10. WANG C.-T., CHOU W.-L., KUO Y.-M. Removal of COD from laundry wastewater by electrocoagulation/ electroflotation. J. Hazard. Mater. 164, 81, 2009.
  • 11. LI Y., WANG F., ZHOU G., NI Y. Aniline degradation by electrocatalytic oxidation. Chemosphere 53, 1229, 2003.
  • 12. LIU H., ZHAO X., QU J. Electrocoagulation in Water Treatment, [In]: C. Comninellis and G. Chen (Eds.), Electrochemistry for the Environment, Springer Science+Business Media, New York. pp. 245-262, 2010.
  • 13. BEHBAHANI M., MOGHADDAM M.R.A., ARAMI M. Techno-economical evaluation of fluoride removal by elec- trocoagulation process: Optimization through response sur­face methodology. Desalination 271, 209, 2011.
  • 14. NASUTION M.A., YAAKOB Z., ALI E., TASIRIN S.M., ABDULLAH S.R.S. Electrocoagulation of Palm Oil Mill Effluent as Wastewater Treatment and Hydrogen Production Using Electrode Aluminum. J. Environ. Qual. 40, (4) 1332, 2011. doi:10.2134/jeq2011.0002. 2011.
  • 15. AGUSTIN M.B., SENGPRACHA W.P., PHUTDHA- WONG W. Electrocoagulation of Palm Oil Mill Effluent. Int. J. Environ. Res. Public Health 5, (3), 177, 2008.
  • 16. CHEN G., HUNG Y.-T. Electrochemical Wastewater Treatment Processes, [In]: L. K. Wang, et al. (Eds.), Handbook of Environmental Engineering, Volume 5: Advanced Physicochemical Treatment Technologies, The Humana Press Inc., Totowa, NJ. pp. 57-105, 2007.
  • 17. KHEMIS M., LECLERC J.P., TANGUY G., VALENTIN G., LAPICQUE F. Treatment of industrial liquidwastes by electrocoagulation: Experimental investigations and an over­all interpretation model. Chem. Eng. Sci. 61, 3602, 2006.
  • 18. CHAVALPARIT O., ONGWANDEE M. Optimizing elec- trocoagulation process for the treatment of biodiesel waste- water using response surface methodology. J. Environ. Sci. (China) 21, 1491, 2009.
  • 19. CAN O.T., KOBYA M., DEMIRBAS E., BAYRAMOGLU M. Treatment of the textile wastewater by combined elec- trocoagulation. Chemosphere 62, 181, 2006. doi:10.1016/j.chemosphere.2005.05.022.
  • 20. MERZOUKA B., GOURICH B., SEKKI A., MADANI K., CHIBANE M. Removal turbidity and separation of heavy metals using electrocoagulation-electroflotation technique A case study. J. Hazard. Mater. 164, 215, 2009.
  • 21. SIELIECHI J.M., LARTIGES B.S., KAYEM G.J., HUPONT S., FROCHOT C., THIEME J., GHANBAJA J., D'ESPINOSE DE LA CAILLERIE J.B., BARRES O., KAMGA R., LEVITZ P., MICHOT L.J. Changes in humic acid conformation during coagulation with ferric chloride: implications for drinking water treatment. Water Res. 42, 2111, 2008. DOI: S0043-1354(07)00711-7[pii] 10.1016/ j.watres.2007.11.017.
  • 22. GHOSH D., SOLANKI H., PURKAIT M.K. Removal of Fe(II) from tap water by electrocoagulation technique. J. Hazard. Mater. 155, 135, 2008.
  • 23. MALAKOOTIAN M., YOUSEFI N. The Efficiency of Electrocoagulation Process Using Aluminum Electrodes in Removal of Hardness from Water. Iranian Journal of Environmental Health Science & Engineering 6, 131, 2009.
  • 24. HAMMES F., SEKA A., DE KNIJF S., VERSTRAETE W. A novel approach to calcium removal from calcium-rich industrial wastewater. Water Res. 37, 699, 2003.
  • 25. SCHULZ M.C., BAYGENTS J.C., FARRELL J. Laboratory and pilot testing of electrocoagulation for removing scaleforming species from industrial process waters International Journal of Environment Science and Technology 6, 521, 2009.
  • 26. TAKE T., TSURUTANI K., UMEDA M. Hydrogen produc­tion by methanol-water solution electrolysis. J. Power Sources doi:10.1016/j.jpowsour.2006.10.011:9-16. 2007.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.