PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 75 | 2 |
Tytuł artykułu

Linking extracellular electric potential in the brain to neural activity - a review of source localization and component identification methods

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to technological advances in electrophysiology, there is renewed interest in the analysis of local field potentials recorded at many sites simultaneously. In this paper the main problems related to the analysis of LFP are presented, and recent developments in the data analysis methods are reviewed. The focus of the paper is on reconstruction of current source density from extracellular recordings and on decomposition of neural activity into meaningful components.
Wydawca
-
Rocznik
Tom
75
Numer
2
Opis fizyczny
p.117-125,ref.
Twórcy
autor
  • Laboratory of Neuroinformatics, Department of Neurophysiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
Bibliografia
  • Einevoll GT, Pettersen KH, Devor A, Ulbert I, Halgren E, Dale AM (2007) Laminar population analysis: estimating firing rates and evoked synaptic activity from multielec- trode recordings in rat barrel cortex. J Neurophysiol 97: 2174-2190.
  • Einevoll GT, Linden H, Tetzlaff T, Łęski S, Pettersen KH (2013) Local Field Potentials: biophysical origin and analysis. In: Principles of Neural Coding (Panzeri S, Quian Quiroga R, Eds.). CRC Press, Boca Raton, p. 37-60.
  • Głąbska H, Potworowski J, Łęski S, Wójcik DK (2014) Independent components of neural activity carry informa¬tion on individual populations. PLOS ONE 9: e105071.
  • Gratiy SL, Devor A, Einevoll GT, Dale AM (2011) On the estimation of population-specific synaptic currents from laminar multielectrode recordings. Front Neuroinform 5: 32.
  • Hagen E, Ness TV, Khosrowshahi A, S0rensen C, Fyhn M, Hafting T, Franke F, Einevoll GT (2015) ViSAPy: A Python tool for biophysics-based generation of virtual spiking activity for evaluation of spike-sorting algo¬rithms. J Neurosci Meth 245: 182-204.
  • Linden H, Tetzlaff T, Potjans TC, Pettersen KH, Grün S, Diesmann M, Einevoll GT (2011) Modeling the spatial reach of the LFP. Neuron 72: 859-872.
  • Linden H, Hagen E, Łęski S, Norheim ES, Pettersen KH, Einevoll GT (2013) LFPy: a tool for biophysical simula¬tion of extracellular potentials generated by detailed model neurons. Front Neuroinform 7: 41.
  • Łęski S, Wójcik DK, Tereszczuk J, Świejkowski DA, Kublik E, Wróbel A (2007) Inverse Current-Source Density method in 3D: reconstruction fidelity, boundary effects, and influence of distant sources. Neuroinformatics 5: 207-222.
  • Łęski S, Kublik E, Świejkowski DA, Wróbel A, Wójcik DK (2010) Extracting functional components of neural dynamics with Independent Component Analysis and inverse Current Source Density. J Comput Neurosci 29: 459-473.
  • Łęski S, Pettersen KH, Tunstall B, Einevoll GT, Gigg J, Wójcik DK (2011) Inverse Current Source Density method in two dimensions: inferring neural activation from multielectrode recordings. Neuroinformatics 9: 401-425.
  • Łęski S, Linden H, Tetzlaff T, Pettersen KH, Einevoll GT (2013) Frequency dependence of signal power and spatial reach of the local field potential. PLOS Comput Biol 9: e1003137.
  • Makarov VA, Makarova J, Herreras O (2010) Disentanglement of local field potential sources by independent component analysis. J Comput Neurosci 29: 445-457.
  • Mitzdorf U (1985) Current source-density method and appli¬cation in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev 65: 37-100.
  • Ness TV, Chintaluri HC, Potworowski J, Łęski S, Głąbska H, Wójcik DK, Einevoll GT (2015) Modelling and analy¬sis of electrical potentials recorded in microelectrode arrays (MEAs). Neuroinformatics, doi:10.1007/s12021- 015-9265-6.
  • Pettersen KH, Devor A, Ulbert I, Dale AM, Einevoll GT (2006) Current-source density estimation based on inver¬sion of electrostatic forward solution: effects of finite extent of neuronal activity and conductivity discontinui¬ties. J Neurosci Meth 154: 116-133.
  • Pitts W (1952) Investigations on synaptic transmission. In: Cybernetics: Circular Causal and Feedback Mechanisms in Biological and Social Systems (Transactions of the Ninth Conference) (von Foerster H, ed.). Josiah Macy, Jr. Foundation, New York, 159-168.
  • Potworowski J, Jakuczun W, Łęski S, Wójcik DK (2012) Kernel Current Source Density method. Neural Comput 24: 541-575.
  • Sejnowski TJ, Churchland PS, Movshon JA (2014) Putting big data to good use in neuroscience. Nat Neurosci 17: 1440-1441.
  • Somogyvari Z, Zalanyi L, Ulbert I, Erdi P (2005) Model¬based source localization of extracellular action poten¬tials. J Neurosci Meth 147: 126-137.
  • Somogyvari Z, Cserpan D, Ulbert I, Erdi P (2012) Localization of single-cell current sources based on extra¬cellular potential patterns: the spike CSD method. Eur J Neurosci 36: 3299-3313.
  • Traub RD, Contreras D, Cunningham MO, Murray H, LeBeau FEN, Roopun A, Bibbig A, Wilent WB, Higley MJ, Whittington MA (2005) Single-column thalamocorti¬cal network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. J Neurophysiol 93: 2194-2232.
  • Wójcik DK, Łęski S (2010) Current source density reconstruc¬tion from incomplete data. Neural Comput 22: 48-60.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-036a380e-1a9b-411f-9b10-22212e38e164
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.